Abstract
Dentin is a biological composite exhibiting multilevel hierarchical structure, which confers excellent damage tolerance to this tissue. Despite the progress in characterization of fracture behavior of dentin, the contribution of composite structure consisting of peritubular dentin (PTD), intertubular dentin (ITD) and tubules to fracture resistance remains elusive. In this study, calculations are carried out for energy release rate associated with crack propagation in the microstructure of dentin. Crack penetration and deflection at the PTD–ITD interface are accounted for in the numerical analyses. It is found that high stiffness of the PTD plays a role in increasing crack driving force, promoting crack growth in the microstructure of dentin. For crack penetration across the PTD–ITD interface, the crack driving force increases with increasing tubule radius; and thick PTD generates amplified crack driving force, thereby leading to weak fracture resistance. The driving force for crack deflection increases with the increase in tubule radius in the case of short cracks, while for long cracks, there is a decrease in driving force with increasing tubule radius. Furthermore, we show that the competition between crack penetration and deflection at the PTD-ITD interface is controlled by the ratio of PTD to ITD elastic modulus, tubule radius and thickness of PTD. High PTD stiffness can increase the propensity of crack deflection. The microstructure of dentin with large tubule radius favors crack deflection and thick PTD is beneficial for crack penetration.