Abstract
The utilization of lattice-based scaffolds emerging as an advance technique over conventional bio-implants in Bone Tissue Engineering. In this study, totally six lattice structures are considered for permeability and wall shear stress (WSS) investigation. Namely triply periodic minimal surfaces (TPMS)-based Gyroid, Schwarz-P, Schwarz-D, and two beam-based structure—Cubic and Fluorite are compared with the proposed new lattice structure at porosity level of 80%, 75%, and 70%. The proposed new lattice has combine characteristic of Gyroid and Schwarz-D TPMS lattice. The permeability is determined through Darcy's law, where the pressure drop across the lattice structure is calculated using a computational fluid dynamics (CFD) tool at flowrate between 0.2 and 10 ml/min. The Cubic and Schwarz-P lattice structures exhibited the highest permeability but at the cost of a lower active surface area for WSS, measuring below 155 mm2, means least cell proliferation occurs while the permeability value in New Lattice structure is in the ideal range with the enhanced active surface area for WSS (514 mm2). The complex internal curvatures of New Lattice promote the cell proliferation while the through-pore holes allow the efficient cell seeding.