Abstract

The present study evaluates a parameter discovery approach based on a lumped parameter model of the cardiovascular system in conjunction with optimization to approximate important cardiac parameters, including simulated left ventricle elastances. Important parameters pertaining to ventricular function were estimated using gradient optimization and synthetically generated measurements. Forward-mode automatic differentiation was used to estimate the cost function-parameter matrices and compared to the common finite differences approach. Synthetic data of healthy and diseased hearts were generated as proxies for noninvasive clinical measurements and used to evaluate the algorithm. Twelve parameters including left ventricle elastances were selected for optimization based on 99% explained variation in mean left ventricle pressure and volume. The hybrid optimization strategy yielded the best overall results compared to 1st order optimization with automatic differentiation and finite difference approaches, with mean absolute percentage errors ranging from 6.67% to 14.14%. Errors in left ventricle elastance estimates for simulated aortic stenosis and mitral regurgitation were smallest when including synthetic measurements for arterial pressure and valvular flow rate at approximately 2% and degraded to roughly 5% when including volume trends as well. However, the latter resulted in better tracking of the left ventricle pressure waveforms and may be considered when the necessary equipment is available.

References

1.
BeLue
,
R.
,
Okoror
,
T. A.
,
Iwelunmor
,
J.
,
Taylor
,
K. D.
,
Degboe
,
A. N.
,
Agyemang
,
C.
, and
Ogedegbe
,
G.
,
2009
, “
An Overview of Cardiovascular Risk Factor Burden in Sub-Saharan African Countries: A Socio-Cultural Perspective
,”
Global. Health
,
5
, pp.
1
12
.10.1186/1744-8603-5-10
2.
Keates
,
A. K.
,
Mocumbi
,
A. O.
,
Ntsekhe
,
M.
,
Sliwa
,
K.
, and
Stewart
,
S.
,
2017
, “
Cardiovascular Disease in Africa: Epidemiological Profile and Challenges
,”
Nat. Rev. Cardiol.
,
14
(
5
), pp.
273
293
.10.1038/nrcardio.2017.19
3.
Yuyun
,
M. F.
,
Sliwa
,
K.
,
Kengne
,
A. P.
,
Mocumbi
,
A. O.
, and
Bukhman
,
G.
,
2020
, “
Cardiovascular Diseases in Sub-Saharan Africa Compared to High-Income Countries: An Epidemiological Perspective
,”
Glob. Heart
,
15
(
1
), pp.
15
18
.10.5334/gh.403
4.
Gayat
,
E.
,
Mor-Avi
,
V.
,
Weinert
,
L.
,
Yodwut
,
C.
, and
Lang
,
R. M.
,
2011
, “
Noninvasive Quantification of Left Ventricular Elastance and Ventricular-Arterial Coupling Using Three-Dimensional Echocardiography and Arterial Tonometry
,”
Am. J. Physiol. - Hear. Circ. Physiol.
,
301
(
5
), pp.
1916
1923
.10.1152/ajpheart.00760.2011
5.
Kass
,
D. A.
,
Yamazaki
,
T.
,
Burkhoff
,
D.
,
Maughan
,
W. L.
, and
Sagawa
,
K.
,
1986
, “
Determination of Left Ventricular End-Systolic Pressure-Volume Relationships by the Conductance (Volume) Catheter Technique
,”
Circulation
,
73
(
3
), pp.
586
595
.10.1161/01.CIR.73.3.586
6.
Chen
,
C. H.
,
Fetics
,
B.
,
Nevo
,
E.
,
Rochitte
,
C. E.
,
Chiou
,
K. R.
,
Ding
,
P. Y. A.
,
Kawaguchi
,
M.
, and
Kass
,
D. A.
,
2001
, “
Noninvasive Single-Beat Determination of Left Ventricular End-Systolic Elastance in Humans
,”
J. Am. Coll. Cardiol.
,
38
(
7
), pp.
2028
2034
.10.1016/S0735-1097(01)01651-5
7.
Bikia
,
V.
,
Adamopoulos
,
D.
,
Pagoulatou
,
S.
,
Rovas
,
G.
, and
Stergiopulos
,
N.
,
2021
, “
AI-Based Estimation of End-Systolic Elastance From Arm-Pressure and Systolic Time Intervals
,”
Front Artif. Intell.
, 4, p.
579541
.10.3389/frai.2021.579541
8.
Huang
,
F.
, and
Ying
,
S.
,
2020
, “
On-Line Parameter Identification of the Lumped Arterial System Model: A Simulation Study
,”
PLoS One
,
15
(
7
), pp.
e0236012
17
.10.1371/journal.pone.0236012
9.
Mathworks
,
2022
, “Fmincon,” fmincon: User guide, Mathworks, Natick, MA, accessed Sept. 21, 2022, https://www.mathworks.com/help/optim/ug/fmincon.html
10.
Zhang
,
X.
,
Wu
,
D.
,
Miao
,
F.
,
Liu
,
H.
, and
Li
,
Y.
,
2020
, “
Personalized Hemodynamic Modeling of the Human Cardiovascular System: A Reduced-Order Computing Model
,”
IEEE Trans. Biomed. Eng.
,
67
(
10
), pp.
2754
2764
.10.1109/TBME.2020.2970244
11.
Colunga
,
A. L.
,
Kim
,
K. G.
,
Woodall
,
N. P.
,
Dardas
,
T. F.
,
Gennari
,
J. H.
,
Olufsen
,
M. S.
, and
Carlson
,
B. E.
,
2020
, “
Deep Phenotyping of Cardiac Function in Heart Transplant Patients Using Cardiovascular System Models
,”
J. Physiol.
,
598
(
15
), pp.
3203
3222
.10.1113/JP279393
12.
Keshavarz-Motamed
,
Z.
,
2020
, “
A Diagnostic, Monitoring, and Predictive Tool for Patients With Complex Valvular, Vascular and Ventricular Diseases
,”
Sci. Rep.
,
10
(
1
), pp.
1
19
.10.1038/s41598-020-63728-8
13.
Bjørdalsbakke
,
N. L.
,
Sturdy
,
J. T.
,
Hose
,
D. R.
, and
Hellevik
,
L. R.
,
2022
, “
Parameter Estimation for Closed-Loop Lumped Parameter Models of the Systemic Circulation Using Synthetic Data
,”
Math. Biosci.
,
343
, p.
108731
.10.1016/j.mbs.2021.108731
14.
Branch
,
M. A.
,
Coleman
,
T.
, and
Li
,
Y.
,
1999
, “
A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems
,”
SIAM J. Sci. Comput.
,
21
(
1
), pp.
1
23
.10.1137/S1064827595289108
15.
SciPy Organisation
,
2021
, “
SciPy 1.8.0: User Guide, Scipy.optimize.least_Squares
,” SciPy Organisation, accessed Sept. 21, 2022, https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
16.
Marsden
,
A. L.
,
2014
, “
Optimization in Cardiovascular Modeling
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
519
546
.10.1146/annurev-fluid-010313-141341
17.
Kochenderfer
,
M. J.
, and
Wheeler
,
T.
,
2019
,
Algorithms for Optimization
, 1st ed.,
MIT Press
,
Cambridge, UK
.
18.
Suga
,
H.
,
Sagawa
,
K.
, and
Shoukas
,
A. A.
,
1973
, “
Load Independence of the Instantaneous Pressure-Volume Ratio of the Canine Left Ventricle and Effects of Epinephrine and Heart Rate on the Ratio
,”
Circ. Res.
,
32
(
3
), pp.
314
322
.10.1161/01.RES.32.3.314
19.
Korakianitis
,
T.
, and
Shi
,
Y.
,
2006
, “
Numerical Simulation of Cardiovascular Dynamics With Healthy and Diseased Heart Valves
,”
J. Biomech.
,
39
(
11
), pp.
1964
1982
.10.1016/j.jbiomech.2005.06.016
20.
Bozkurt
,
S.
,
2019
, “
Mathematical Modeling of Cardiac Function to Evaluate Clinical Cases in Adults and Children
,”
PLoS One
,
14
(
10
), p.
e0224663
.10.1371/journal.pone.0224663
21.
Korakianitis
,
T.
, and
Shi
,
Y.
,
2006
, “
A Concentrated Parameter Model for the Human Cardiovascular System Including Heart Valve Dynamics and Atrioventricular Interaction
,”
Med. Eng. Phys.
,
28
(
7
), pp.
613
628
.10.1016/j.medengphy.2005.10.004
22.
Tang
,
H.
,
Dai
,
Z.
,
Wang
,
M.
,
Guo
,
B.
,
Wang
,
S.
,
Wen
,
J.
, and
Li
,
T.
,
2020
, “
Lumped-Parameter Circuit Platform for Simulating Typical Cases of Pulmonary Hypertensions From Point of Hemodynamics
,”
J. Cardiovasc. Transl. Res.
,
13
(
5
), pp.
826
852
.10.1007/s12265-020-09953-y
23.
Tsitouras
,
C.
,
2011
, “
Runge-Kutta Pairs of Order 5(4) Satisfying Only the First Column Simplifying Assumption
,”
Comput. Math. Appl.
,
62
(
2
), pp.
770
775
.10.1016/j.camwa.2011.06.002
24.
Laubscher
,
R.
,
Liebenberg
,
J.
, and
Herbst
,
P.
,
2022
, “Dynamic Simulation of Aortic Valve Stenosis Using a Lumped Parameter Cardiovascular System Model With Flow Regime Dependent Valve Pressure Loss Characteristics,”
arxiv:2204.03701
.
25.
Rackauckas
,
C.
, and
Nie
,
Q.
,
2017
, “
DifferentialEquations.jl
,”
J. Open Res. Softw.
,
5
(
1
), p.
15
.10.5334/jors.151
26.
Revels
,
J.
,
Lubin
,
M.
, and
Papamarkou
,
T.
,
2016
, “Forward-Mode Automatic Differentiation in Julia,”
arXiv:1607.07892
.10.48550/arXiv.1607.07892
27.
Morgensen
,
P.
, and
Riseth
,
A.
,
2018
, “
Optim: A Mathematical Optimization Package for Julia
,”
J. Open Source Softw.
,
3
(
24
), p.
615
.10.21105/joss.00615
28.
Innes
,
M.
,
2018
, “
Flux: Elegant Machine Learning With Julia
,”
J. Open Source Softw.
, 3(25), p.
602
.10.21105/joss.00602
29.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “Adam: A Method for Stochastic Optimization,”
arXiv Prepr
., pp.
1
15
.10.48550/arXiv.1412.6980
30.
Nocedal
,
J.
,
1980
, “
Updating Quasi-Newton Matrices With Limited Storage
,”
Math. Comput.
,
35
(
151
), pp.
773
782
.10.1090/S0025-5718-1980-0572855-7
31.
Laubscher
,
R.
, and
Rousseau
,
P.
,
2022
, “
Application of a Mixed Variable Physics-Informed Neural Network to Solve the Incompressible Steady-State and Transient Mass, Momentum, and Energy Conservation Equations for Flow Over in-Line Heated Tubes
,”
Appl. Soft Comput.
,
114
, p.
108050
.10.1016/j.asoc.2021.108050
32.
Markidis
,
S.
,
2021
, “
The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
,”
arxiv:2103.09655
, 1(1), pp.
1
20
. https://arxiv.org/abs/2103.09655
You do not currently have access to this content.