Abstract

Changes in synovial fluid viscosity may be used to detect joint disease; however, methods to evaluate these changes at the point-of-care are currently rudimentary. Previously, we demonstrated that magnetic particle translation through static synovial fluid could serve as a surrogate marker of synovial fluid mechanics. In this work, we examine the magnetic deflection of a stream of particles flowing through a stream of synovial fluid and relate this deflection to changes in fluid mechanics. First, a flow device was designed, where a stream of magnetic particles flows along with synovial fluid. As the particle stream approaches and passes a fixed permanent magnet, the particle stream deflects. Conceptually, as the synovial fluid viscosity decreases, the deflection of the particle stream should increase due to a decreased drag force opposing the force magnetization. To assess this concept, particle deflection was first measured in Newtonian glycerol solutions of known varying viscosity under different flow conditions. Next, the device was used to test bovine synovial fluid viscosity, which had been progressively degraded using ultrasonication. A strong correlation was observed between the deflection of the magnetic particles and the viscosity of the glycerol solutions (R2 = 0.987) and the amount of ultrasonic degradation of synovial fluid (R2 = 0.7045). In the future, the principle of particle deflection may be used to design point-of-care quantification of synovial fluid mechanics, as the assessment does not require particles to be separated from the fluid for quantification and could be conducted under simple flow conditions.

References

1.
Jebens
,
E. H.
, and
Monk-Jones
,
M. E.
,
1959
, “
On the Viscosity and PH of Synovial Fluid and the PH of Blood
,”
J. Bone Jt. Surg., Br. Vol.
,
41-B
(
2
), pp.
388
400
.10.1302/0301-620X.41B2.388
2.
Bullough
,
P.
,
2009
, “
The Dysfunctional Joint
,”
Orthopaedic Pathology
,
Mosby Elsevier
, Maryland Heights, MO, pp.
231
252
.
3.
Fam
,
H.
,
Bryant
,
J. T.
, and
Kontopoulou
,
M.
,
2007
, “
Rheological Properties of Synovial Fluids
,”
Biorheology
,
44
(
2
), pp.
59
74
.https://pubmed.ncbi.nlm.nih.gov/17538199/
4.
Levine
,
M. G.
, and
Kling
,
D. H.
,
1956
, “
Rheologic Studies on Synovial Fluid
,”
J. Clin. Invest.
,
35
(
12
), pp.
1419
1427
.10.1172/JCI103399
5.
Cowman
,
M. K.
, and
Matsuoka
,
S.
,
2005
, “
Experimental Approaches to Hyaluronan Structure
,”
Carbohydr. Res.
,
340
(
5
), pp.
791
809
.10.1016/j.carres.2005.01.022
6.
Martin-Alarcon
,
L.
, and
Schmidt
,
T. A.
,
2016
, “
Rheological Effects of Macromolecular Interactions in Synovial Fluid
,”
Biorheology
,
53
(
2
), pp.
49
67
.10.3233/BIR-15104
7.
Steel
,
C. M.
,
2008
, “
Equine Synovial Fluid Analysis
,”
Vet. Clin. North Am.: Equine Pract.
,
24
(
2
), pp.
437
454
.10.1016/j.cveq.2008.05.004
8.
Bingöl
,
A. Ö.
,
Lohmann
,
D.
,
Püschel
,
K.
, and
Kulicke
,
W.-M.
,
2010
, “
Characterization and Comparison of Shear and Extensional Flow of Sodium Hyaluronate and Human Synovial Fluid
,”
Biorheology
,
47
(
3–4
), pp.
205
224
.10.3233/BIR-2010-0572
9.
Haward
,
S. J.
,
Jaishankar
,
A.
,
Oliveira
,
M. S. N.
,
Alves
,
M. A.
, and
McKinley
,
G. H.
,
2013
, “
Extensional Flow of Hyaluronic Acid Solutions in an Optimized Microfluidic Cross-Slot Device
,”
Biomicrofluidics
,
7
(
4
), p.
044108
.10.1063/1.4816708
10.
Squires
,
T. M.
, and
Mason
,
T. G.
,
2010
, “
Fluid Mechanics of Microrheology
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
413
438
.10.1146/annurev-fluid-121108-145608
11.
Mason
,
T. G.
,
Ganesan
,
K.
,
van Zanten
,
J. H.
,
Wirtz
,
D.
, and
Kuo
,
S. C.
,
1997
, “
Particle Tracking Microrheology of Complex Fluids
,”
Phys. Rev. Lett.
,
79
(
17
), pp.
3282
3285
.10.1103/PhysRevLett.79.3282
12.
Crick
,
F. H. C.
, and
Hughes
,
A. F. W.
,
1950
, “
The Physical Properties of Cytoplasm
,”
Exp. Cell Res.
,
1
(
1
), pp.
37
80
.10.1016/0014-4827(50)90048-6
13.
Shah
,
Y. Y.
,
Maldonado-Camargo
,
L.
,
Patel
,
N. S.
,
Biedrzycki
,
A. H.
,
Yarmola
,
E. G.
,
Dobson
,
J.
,
Rinaldi
,
C.
, and
Allen
,
K. D.
,
2017
, “
Magnetic Particle Translation as a Surrogate Measure for Synovial Fluid Mechanics
,”
J. Biomech.
,
60
, pp.
9
14
.10.1016/j.jbiomech.2017.05.015
14.
Gupta
,
S.
,
Wang
,
W. S.
, and
Vanapalli
,
S. A.
,
2016
, “
Microfluidic Viscometers for Shear Rheology of Complex Fluids and Biofluids
,”
Biomicrofluidics
,
10
(
4
), p.
043402
.10.1063/1.4955123
15.
Solomon
,
D. E.
,
Abdel-Raziq
,
A.
, and
Vanapalli
,
S. A.
,
2016
, “
A Stress-Controlled Microfluidic Shear Viscometer Based on Smartphone Imaging
,”
Rheol. Acta
,
55
(
9
), pp.
727
738
.10.1007/s00397-016-0940-9
16.
Srivastava
,
N.
, and
Burns
,
M. A.
,
2006
, “
Analysis of Non-Newtonian Liquids Using a Microfluidic Capillary Viscometer
,”
Anal. Chem.
,
78
(
5
), pp.
1690
1696
.10.1021/ac0518046
17.
Garraud
,
A.
,
Velez
,
C.
,
Shah
,
Y.
,
Garraud
,
N.
,
Kozissnik
,
B.
,
Yarmola
,
E. G.
,
Allen
,
K. D.
,
Dobson
,
J.
, and
Arnold
,
D. P.
,
2016
, “
Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets
,”
IEEE Trans. Biomed. Eng.
,
63
(
2
), pp.
372
378
.10.1109/TBME.2015.2458783
18.
Boyer
,
T. H.
,
1988
, “
The Force on a Magnetic Dipole
,”
Am. J. Phys.
,
56
(
8
), pp.
688
692
.10.1119/1.15501
19.
Cheng
,
N.-S.
,
2008
, “
Formula for the Viscosity of a Glycerol−Water Mixture
,”
Ind. Eng. Chem. Res.
,
47
(
9
), pp.
3285
3288
.10.1021/ie071349z
20.
Al-Assaf
,
S.
,
Meadows
,
J.
,
Phillips
,
G. O.
, and
Williams
,
P. A.
,
1996
, “
The Application of Shear and Extensional Viscosity Measurements to Assess the Potential of Hylan in Viscosupplementation
,”
Biorheology
,
33
(
4–5
), pp.
319
332
.10.3233/BIR-1996-334-503
21.
Orviský
,
E.
,
Šoltés
,
L.
,
Chabreček
,
P.
,
Novák
,
I.
, and
Stančíková
,
M.
,
1993
, “
Size Exclusion Chromatographic Characterization of Sodium Hyaluronate Fractions Prepared by High Energetic Sonication
,”
Chromatographia
,
37
(
1–2
), pp.
20
22
.10.1007/BF02272182
22.
Schindelin
,
J.
,
Rueden
,
C. T.
,
Hiner
,
M. C.
, and
Eliceiri
,
K. W.
,
2015
, “
The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis
,”
Mol. Reprod. Dev.
,
82
(
7–8
), pp.
518
529
.10.1002/mrd.22489
You do not currently have access to this content.