Abstract

Part II of this study evaluates the predictive ability of the skeletal muscle force model derived in Part I within the ankle joint complex. The model is founded in dimensional analysis and uses electromyography and the muscle force–length, force–velocity, and force–frequency curves as inputs. Seventeen subjects (eight males, nine females) performed five different exercises geared toward activating the primary muscles crossing the ankle joint. Motion capture, force plate, and electromyography data were collected during these exercises for use in the analysis. A constant, Km, was calculated for each muscle of each subject using four of the five exercises. The fifth exercise was then used to validate the results by treating the moments due to muscle forces as known and all other components in Euler's second law as unknown. While muscle forces cannot be directly validated in vivo, methods can be developed to test these values with reasonable confidence. This study compared moments about the ankle joint due to the calculated muscle forces to the sum of the moments due to all other sources and the kinematic terms in the second Newton–Euler equation of rigid body motion. Average percent errors for each subject ranged from 4.2% to 15.5% with a total average percent error across all subjects of 8.2%, while maximum percent errors for each subject ranged from 33.3% to 78.0% with an overall average maximum of 52.4%. Future work will examine sensitivity analyses to identify any potential simplifications to the model and solution process, as well as validate the model on a more complex joint system to ensure it still performs at a satisfactory level.

References

1.
Lutz
,
S. D.
,
Claes
,
L.
,
Kiefer
,
H.
, and
Durseten
,
L.
,
1995
, “
The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain
,”
Am. J. Sports Med.
,
23
(
1
), pp.
129
136
.10.1177/036354659502300122
2.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2005
, “
Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1911
1916
.10.1249/01.mss.0000176684.24008.6f
3.
Yeadon
,
M. R.
, and
Challis
,
J. H.
,
1994
, “
The Future of Performance-Related Sports Biomechanics Research
,”
J. Sports Sci.
,
12
(
1
), pp.
3
32
.10.1080/02640419408732156
4.
Livesay
,
G. A.
,
Reda
,
D. R.
, and
Nauman
,
E. A.
,
2006
, “
Peak Torque and Rotational Stiffness Developed at the Shoe-Surface Interface: The Effect of Shoe Type and Playing Surface
,”
Am. J. Sports Med.
,
34
(
3
), pp.
415
422
.10.1177/0363546505284182
5.
Auger
,
J.
,
Markel
,
J.
,
Pecoski
,
D. D.
,
Leiva-Molano
,
N.
,
Talavage
,
T. M.
,
Leverenz
,
L.
,
Shen
,
F.
, and
Nauman
,
E. A.
,
2020
, “
Factors Affecting Peak Impact Force During Soccer Headers and Implications for the Mitigation of Head Injuries
,”
PLoS ONE
,
15
(
10
), p.
e0240162
.10.1371/journal.pone.0240162
6.
Hartmann
,
H.
,
Wirth
,
K.
, and
Klusemann
,
M.
,
2013
, “
Analysis of the Load on the Knee Joint and Vertebral Column With Changes in Squatting Depth and Weight Load
,”
Sports Med.
,
43
(
10
), pp.
993
1008
.10.1007/s40279-013-0073-6
7.
Gardinier
,
E. S.
,
Manal
,
K.
,
Buchanan
,
T. S.
, and
Snyder-Mackler
,
L.
,
2013
, “
Altered Loading in the Injured Knee After ACL Rupture
,”
J. Orthop. Res.
,
31
(
3
), pp.
458
464
.10.1002/jor.22249
8.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.10.1016/S0021-9290(03)00010-1
9.
Bartlett
,
R.
, and
Bussey
,
M.
,
2011
,
Sports Biomechanics: Reducing Injury Risk and Improving Sports Performance
, 2nd ed.,
Routledge
,
London/New York
, p.
11
.
10.
Nasr
,
A.
,
Inkol
,
K. A.
,
Bell
,
S.
, and
McPhee
,
J.
,
2021
, “
Inversemusclenet: Alternative Machine Learning Solution to Static Optimization and Inverse Muscle Modeling
,”
Front. Comput. Neurosci.
,
15
, p.
12
.10.3389/fncom.2021.759489
11.
Dickerson
,
D. A.
,
Misk
,
T. N.
,
Van Sickle
,
D. C.
,
Breur
,
G. J.
, and
Nauman
,
E. A.
,
2013
, “
In Vitro and In Vivo Evaluation of Orthopedic Interface Repair Using a Tissue Scaffold With a Continuous Hard Tissue-Soft Tissue Transition
,”
J. Orthop. Surg. Res.
,
8
(
1
), p. 18.10.1186/1749-799X-8-18
12.
Gentleman
,
E.
,
Lay
,
A. N.
,
Dickerson
,
D. A.
,
Nauman
,
E. A.
,
Livesay
,
G. A.
, and
Dee
,
K. C.
,
2003
, “
Mechanical Characterization of Collagen Fibers and Scaffolds for Tissue Engineering
,”
Biomaterials
,
24
(
21
), pp.
3805
3813
.10.1016/S0142-9612(03)00206-0
13.
Cram
,
P.
,
Lu
,
X.
,
Kates
,
S. L.
,
Singh
,
J. A.
,
Li
,
Y.
, and
Wolf
,
B. R.
,
2012
, “
Total Knee Arthroplasty Volume, Utilization, and Outcomes Among Medicare Beneficiaries, 1991-2010
,”
J. Am. Med. Assoc.
,
308
(
12
), pp.
1227
1236
.10.1001/2012.jama.11153
14.
Delanois
,
R. E.
,
Mistry
,
J. B.
,
Gwam
,
C. U.
,
Mohamed
,
N. S.
,
Choksi
,
U. S.
, and
Mont
,
M. A.
,
2017
, “
Current Epidemiology of Revision Total Knee Arthroplasty in the United States
,”
J. Arthroplasty
,
32
(
9
), pp.
2663
2668
.10.1016/j.arth.2017.03.066
15.
Schilaty
,
N. D.
,
Nagelli
,
C.
,
Bates
,
N. A.
,
Sanders
,
T. L.
,
Krych
,
A. J.
,
Stuart
,
M. J.
, and
Hewett
,
T. E.
,
2017
, “
Incidence of Second Anterior Cruciate Ligament Tears and Identification of Associated Risk Factors From 2001 to 2010 Using a Geographic Database
,”
Orthop. J. Sports Med.
,
5
(
8
), p.
232596711772419
.10.1177/2325967117724196
16.
Bean
,
J. C.
,
Chaffin
,
D. B.
, and
Schultz
,
A. B.
,
1988
, “
Biomechanical Model Calculation of Muscle Contraction Forces: A Double Linear Programming Method
,”
J. Biomech.
,
21
(
1
), pp.
59
66
.10.1016/0021-9290(88)90192-3
17.
Prilutsky
,
B. I.
, and
Zatsiorsky
,
V. M.
,
2002
, “
Optimization-Based Models of Muscle Coordination
,”
Exercise Sport Sci. Rev.
,
30
(
1
), pp.
32
38
.10.1097/00003677-200201000-00007
18.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B - Biol. Sci.
,
126
, pp.
136
195
.10.1098/rspb.1938.0050
19.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
1996
, “
A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
367
376
.10.1115/1.2796019
20.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
21.
Nasr
,
A.
,
Bell
,
S.
,
He
,
J.
,
Whittaker
,
R. L.
,
Jiang
,
N.
,
Dickerson
,
C. R.
, and
McPhee
,
J.
,
2021
, “
Musclenet: Mapping Electromyography to Kinematic and Dynamic Biomechanical Variables by Machine Learning
,”
J. Neural Eng.
,
18
(
4
), p.
0460d3
.10.1088/1741-2552/ac1adc
22.
Knodel
,
N. B.
,
Lawson
,
L. B.
, and
Nauman
,
E. A.
, “
An Electromyography-Based Constitutive Law for Force Generation in Skeletal Muscle—Part I: Model Development
,”
ASME J. Biomech. Eng.
,
144
(
10
), p.
101005
.10.1115/1.4053568
23.
Zwarts
,
M. J.
,
Weerden
,
T. W. V.
, and
Haenen
,
H. T. M.
,
1987
, “
Relationship Between Average Muscle Fibre Conduction Velocity and EMG Power Spectra During Isometric Contraction, Recovery and Applied Ischemia
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
56
(
2
), pp.
212
216
.10.1007/BF00640646
24.
Broman
,
H.
,
Bilotto
,
G.
, and
Luca
,
C. D.
,
1985
, “
A Note on the Noninvasive Estimation of Muscle Fiber Conduction Velocity
,”
IEEE Trans. Biomed. Eng.
,
BME-32
(
5
), pp.
341
344
.10.1109/TBME.1985.325550
25.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
26.
Alcazar
,
J.
,
Csapo
,
R.
,
Ara
,
I.
, and
Alegre
,
L. M.
,
2019
, “
On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic
,”
Front. Physiol.
,
10
(
6
), pp.
1
21
.10.3389/fphys.2019.00769
27.
Lee
,
S.
,
Russ
,
D.
, and
Binder-Macleod
,
S.
,
2009
, “
Force-Frequency Relation of Skeletal Muscle
,”
Encyclopedia of Neuroscience
, Springer, Berlin, pp.
1608
1611
.10.1007/978-3-540-29678-2_1818
28.
Komi
,
P. V.
, and
Tesch
,
P.
,
1979
, “
EMG Frequency Spectrum, Muscle Structure, and Fatigue During Dynamic Contractions in Man
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
42
(
1
), pp.
41
50
.10.1007/BF00421103
29.
Luca
,
C. J. D.
,
1997
, “
The Use of Surface Electromyography in Biomechanics
,”
J. Appl. Biomech.
,
13
, pp.
135
163
.10.1123/jab.13.2.135
30.
Viitasalo
,
J. H. T.
, and
Komi
,
P. V.
,
1977
, “
Signal Characteristics of EMG During Fatigue
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
37
(
2
), pp.
111
121
.10.1007/BF00421697
31.
Broman
,
H.
,
Luca
,
C. J. D.
,
Bilotto
,
G.
, and
De
,
J. C.
,
1985
, “
Myoelectric Signal Conduction Velocity and Spectral Parameters: Influence of Force and Time
,”
J. Appl. Physiol.
,
58
(
5
), pp.
1428
1437
.10.1152/jappl.1985.58.5.1428
32.
Roy
,
S.
,
Luca
,
C. D.
, and
Schneider
,
J.
,
1986
, “
Effects of Electrode Location on Myoelectric Conduction Velocity and Median Frequency Estimates
,”
J. Appl. Physiol.
,
61
(
4
), pp.
1510
1517
.10.1152/jappl.1986.61.4.1510
33.
Murakami
,
K.
,
Fujisawa
,
H.
,
Onobe
,
J.
, and
Sato
,
Y.
,
2014
, “
Relationship Between Muscle Fiber Conduction Velocity and the Force-Time Curve During Muscle Twitches
,”
J. Phys. Ther. Sci.
,
26
(
4
), pp.
621
624
.10.1589/jpts.26.621
34.
Wong
,
Y. M.
, and
Ng
,
G. Y.
,
2006
, “
Surface Electrode Placement Affects the EMG Recordings of the Quadriceps Muscles
,”
Phys. Ther. Sport
,
7
(
3
), pp.
122
127
.10.1016/j.ptsp.2006.03.006
You do not currently have access to this content.