Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2–16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

1.
Bishop
,
J. E.
,
Mitchell
,
J. J.
,
Absher
,
P. M.
,
Baldor
,
L.
,
Geller
,
H. A.
,
Woodcock-Mitchell
,
J.
,
Hamblin
,
M. J.
,
Vacek
,
P.
, and
Low
,
R. B.
, 1993, “
Cyclic Mechanical Deformation Stimulates Human Lung Fibroblast Proliferation and Autocrine Growth Factor Activity
,”
Am. J. Respir. Cell Mol. Biol.
,
9
(
2
), pp.
126
133
. 1044-1549
2.
Rudolph
,
R.
,
Berg
,
J. V.
, and
Ehrlick
,
H. P.
, 1992,
Wound Healing: Biochemical and Clinical Aspects
,
W. B. Saunders Co.
,
Philadelphia, PA
.
3.
Deva
,
A. K.
,
Buckland
,
G. H.
,
Fisher
,
E.
,
Liew
,
S. C.
,
Merten
,
S.
,
McGlynn
,
M.
,
Gianoutsos
,
M. P.
,
Baldwin
,
M. A.
, and
Lendvay
,
P. G.
, 2000, “
Topical Negative Pressure in Wound Management
,”
Med. J. Aust.
,
173
(
3
), pp.
128
131
. 0025-729X
4.
Siegel
,
H. J.
,
Long
,
J. L.
,
Watson
,
K. M.
, and
Fiveash
,
J. B.
, 2007, “
Vacuum-Assisted Closure for Radiation-Associated Wound Complications
,”
J. Surg. Oncol.
,
96
(
7
), pp.
575
582
. 0022-4790
5.
Clark
,
R. A. F.
, 1996,
The Molecular and Cellular Biology of Wound Repair
,
Plenum
,
New York
.
6.
Aarabi
,
S.
,
Bhatt
,
K. A.
,
Shi
,
Y.
,
Paterno
,
J.
,
Chang
,
E. I.
,
Loh
,
S. A.
,
Holmes
,
J. W.
,
Longaker
,
M. T.
,
Yee
,
H.
, and
Gurtner
,
G. C.
, 2007, “
Mechanical Load Initiates Hypertrophic Scar Formation Through Decreased Cellular Apoptosis
,”
FASEB J.
,
21
(
12
), pp.
3250
3261
. 0892-6638
7.
Arem
,
A. J.
, and
Madden
,
J. W.
, 1976, “
Effects of Stress on Healing Wounds: I. Intermittent Noncyclical Tension
,”
J. Surg. Res.
,
20
(
2
), pp.
93
102
. 0022-4804
8.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
, 2000, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
351
362
.
9.
Cummings
,
C. L.
,
Gawlitta
,
D.
,
Nerem
,
R. M.
, and
Stegemann
,
J. P.
, 2004, “
Properties of Engineered Vascular Constructs Made From Collagen, Fibrin, and Collagen-Fibrin Mixtures
,”
Biomaterials
,
25
(
17
), pp.
3699
3706
. 0142-9612
10.
Isenberg
,
B. C.
, and
Tranquillo
,
R. T.
, 2003, “
Long-Term Cyclic Distention Enhances the Mechanical Properties of Collagen-Based Media-Equivalents
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
937
949
.
11.
Kim
,
B. S.
,
Nikolovski
,
J.
,
Bonadio
,
J.
, and
Mooney
,
D. J.
, 1999, “
Cyclic Mechanical Strain Regulates the Development of Engineered Smooth Muscle Tissue
,”
Nat. Biotechnol.
1087-0156,
17
(
10
), pp.
979
983
.
12.
Seliktar
,
D.
,
Nerem
,
R. M.
, and
Galis
,
Z. S.
, 2003, “
Mechanical Strain-Stimulated Remodeling of Tissue-Engineered Blood Vessel Constructs
,”
Tissue Eng.
,
9
(
4
), pp.
657
666
. 1076-3279
13.
Balestrini
,
J. L.
, and
Billiar
,
K. L.
, 2006, “
Equibiaxial Cyclic Stretch Stimulates Fibroblasts to Rapidly Remodel Fibrin
,”
J. Biomech.
,
39
(
16
), pp.
2983
2990
. 0021-9290
14.
Kessler
,
D.
,
Dethlefsen
,
S.
,
Haase
,
I.
,
Plomann
,
M.
,
Hirche
,
F.
,
Krieg
,
T.
, and
Eckes
,
B.
, 2001, “
Fibroblasts in Mechanically Stressed Collagen Lattices Assume a ‘Synthetic’ Phenotype
,”
J. Biol. Chem.
0021-9258,
276
(
39
), pp.
36575
36585
.
15.
Grenier
,
G.
,
Remy-Zolghadri
,
M.
,
Larouche
,
D.
,
Gauvin
,
R.
,
Baker
,
K.
,
Bergeron
,
F.
,
Dupuis
,
D.
,
Langelier
,
E.
,
Rancourt
,
D.
,
Auger
,
F. A.
, and
Germain
,
L.
, 2005, “
Tissue Reorganization in Response to Mechanical Load Increases Functionality
,”
Tissue Eng.
1076-3279,
11
(
1–2
), pp.
90
100
.
16.
Pedersen
,
J. A.
, and
Swartz
,
M. A.
, 2005, “
Mechanobiology in the Third Dimension
,”
Ann. Biomed. Eng.
0090-6964,
33
(
11
), pp.
1469
1490
.
17.
Hinz
,
B.
, and
Gabbiani
,
G.
, 2003, “
Cell-Matrix and Cell-Cell Contacts of Myofibroblasts: Role in Connective Tissue Remodeling
,”
Thromb. Haemostasis
,
90
(
6
), pp.
993
1002
. 0340-6245
18.
Tomasek
,
J. J.
,
Haaksma
,
C. J.
,
Eddy
,
R. J.
, and
Vaughan
,
M. B.
, 1992, “
Fibroblast Contraction Occurs on Release of Tension in Attached Collagen Lattices: Dependency on an Organized Actin Cytoskeleton and Serum
,”
Anat. Rec.
,
232
(
3
), pp.
359
368
. 0003-276X
19.
Wille
,
J. J.
,
Elson
,
E. L.
, and
Okamoto
,
R. J.
, 2006, “
Cellular and Matrix Mechanics of Bioartificial Tissues During Continuous Cyclic Stretch
,”
Ann. Biomed. Eng.
0090-6964,
34
(
11
), pp.
1678
1690
.
20.
Grassl
,
E. D.
,
Oegema
,
T. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fibrin as an Alternative Biopolymer to Type-I Collagen for the Fabrication of a Media Equivalent
,”
J. Biomed. Mater. Res.
0021-9304,
60
(
4
), pp.
607
612
.
21.
Swartz
,
D. D.
,
Russell
,
J. A.
, and
Andreadis
,
S. T.
, 2004, “
Engineering of Fibrin-Based Functional and Implantable Small-Diameter Blood Vessels
,”
Am. J. Physiol. Heart Circ. Physiol.
,
288
(
3
), pp.
H1451
1460
. 0363-6135
22.
Neidert
,
M. R.
,
Lee
,
E. S.
,
Oegema
,
T. R.
, and
Tranquillo
,
R. T.
, 2002, “
Enhanced Fibrin Remodeling In Vitro With TGF-Beta1, Insulin and Plasmin for Improved Tissue-Equivalents
,”
Biomaterials
0142-9612,
23
(
17
), pp.
3717
3731
.
23.
Ye
,
Q.
,
Zund
,
G.
,
Benedikt
,
P.
,
Jockenhoevel
,
S.
,
Hoerstrup
,
S. P.
,
Sakyama
,
S.
,
Hubbell
,
J. A.
, and
Turina
,
M.
, 2000, “
Fibrin Gel as a Three Dimensional Matrix in Cardiovascular Tissue Engineering
,”
Eur. J. Cardiothorac. Surg.
,
17
(
5
), pp.
587
591
. 1010-7940
24.
Yao
,
L.
,
Swartz
,
D. D.
,
Gugino
,
S. F.
,
Russell
,
J. A.
, and
Andreadis
,
S. T.
, 2005, “
Fibrin-Based Tissue-Engineered Blood Vessels: Differential Effects of Biomaterial and Culture Parameters on Mechanical Strength and Vascular Reactivity
,”
Tissue Eng.
,
11
(
7–8
), pp.
991
1003
. 1076-3279
25.
Boublik
,
J.
,
Park
,
H.
,
Radisic
,
M.
,
Tognana
,
E.
,
Chen
,
F.
,
Pei
,
M.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2005, “
Mechanical Properties and Remodeling of Hybrid Cardiac Constructs Made From Heart Cells, Fibrin, and Biodegradable, Elastomeric Knitted Fabric
,”
Tissue Eng.
,
11
(
7–8
), pp.
1122
1132
. 1076-3279
26.
Nerem
,
R. M.
, 2007, “
Cell-Based Therapies: From Basic Biology to Replacement, Repair, and Regeneration
,”
Biomaterials
0142-9612,
28
(
34
), pp.
5074
5077
.
27.
Boerboom
,
R. A.
,
Rubbens
,
M. P.
,
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2008, “
Effect of Strain Magnitude on the Tissue Properties of Engineered Cardiovascular Constructs
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
244
253
. 0090-6964
28.
Woessner
, Jr.,
J. F.
, 1961, “
The Determination of Hydroxyproline in Tissue and Protein Samples Containing Small Proportions of This Amino Acid
,”
Arch. Biochem. Biophys.
0003-9861,
93
, pp.
440
447
.
29.
Eastoe
,
J. E.
, 1955, “
The Amino Acid Composition of Mammalian Collagen and Gelatin
,”
Biochem. J.
,
61
(
4
), pp.
589
600
. 0264-6021
30.
Bell
,
E.
,
Ivarsson
,
B.
, and
Merrill
,
C.
, 1979, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
76
(
3
), pp.
1274
1278
.
31.
Billiar
,
K. L.
,
Throm
,
A. M.
, and
Frey
,
M. T.
, 2005, “
Biaxial Failure Properties of Planar Living Tissue Equivalents
,”
J. Biomed. Mater. Res.
,
73A
(
2
), pp.
182
191
. 1549-3296
32.
Ahlfors
,
J. E.
, and
Billiar
,
K. L.
, 2007, “
Biomechanical and Biochemical Characteristics of a Human Fibroblast-Produced and Remodeled Matrix
,”
Biomaterials
,
28
(
13
), pp.
2183
2191
. 0142-9612
33.
Altman
,
G. H.
,
Horan
,
R. L.
,
Martin
,
I.
,
Farhadi
,
J.
,
Stark
,
P. R.
,
Volloch
,
V.
,
Richmond
,
J. C.
,
Vunjak-Novakovic
,
G.
, and
Kaplan
,
D. L.
, 2002, “
Cell Differentiation by Mechanical Stress
,”
FASEB J.
0892-6638,
16
(
2
), pp.
270
272
.
34.
Chun
,
J.
,
Tuan
,
T. L.
,
Han
,
B.
,
Vangsness
,
C. T.
, and
Nimni
,
M. E.
, 2003, “
Cultures of Ligament Fibroblasts in Fibrin Matrix Gel
,”
Connect. Tissue Res.
,
44
(
2
), pp.
81
87
. 0300-8207
35.
Syedain
,
Z. H.
,
Weinberg
,
J. S.
, and
Tranquillo
,
R. T.
, 2008, “
Cyclic Distension of Fibrin-Based Tissue Constructs: Evidence of Adaptation During Growth of Engineered Connective Tissue
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
18
), pp.
6537
6542
. 0021-9533
36.
Clark
,
R. A.
,
Nielsen
,
L. D.
,
Welch
,
M. P.
, and
McPherson
,
J. M.
, 1995, “
Collagen Matrices Attenuate the Collagen-Synthetic Response of Cultured Fibroblasts to TGF-Beta
,”
J. Cell Sci.
,
108
(
Pt 3
), pp.
1251
1261
. 0021-9533
37.
Grassl
,
E. D.
,
Oegema
,
T. R.
, and
Tranquillo
,
R. T.
, 2003, “
A Fibrin-Based Arterial Media Equivalent
,”
J. Biomed. Mater. Res.
,
66A
(
3
), pp.
550
561
. 1549-3296
38.
Nishimura
,
K.
,
Blume
,
P.
,
Ohgi
,
S.
, and
Sumpio
,
B. E.
, 2007, “
Effect of Different Frequencies of Tensile Strain on Human Dermal Fibroblast Proliferation and Survival
,”
Wound Repair Regen
,
15
(
5
), pp.
646
656
. 1067-1927
39.
Wakatsuki
,
T.
,
Kolodney
,
M. S.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
, 2000, “
Cell Mechanics Studied by a Reconstituted Model Tissue
,”
Biophys. J.
,
79
(
5
), pp.
2353
2368
. 0006-3495
You do not currently have access to this content.