Collagen is a key structural protein in the extracellular matrix of many tissues. It provides biological tissues with tensile mechanical strength and is enzymatically cleaved by a class of matrix metalloproteinases known as collagenases. Collagen enzymatic kinetics has been well characterized in solubilized, gel, and reconstituted forms. However, limited information exists on enzyme degradation of structurally intact collagen fibers and, more importantly, on the effect of mechanical deformation on collagen cleavage. We studied the degradation of native rat tail tendon fibers by collagenase after the fibers were mechanically elongated to strains of ε=110%. After the fibers were elongated and the stress was allowed to relax, the fiber was immersed in Clostridium histolyticum collagenase and the decrease in stress (σ) was monitored as a means of calculating the rate of enzyme cleavage of the fiber. An enzyme mechanokinetic (EMK) relaxation function TE(ε) in s1 was calculated from the linear stress-time response during fiber cleavage, where TE(ε) corresponds to the zero order Michaelis–Menten enzyme-substrate kinetic response. The EMK relaxation function TE(ε) was found to decrease with applied strain at a rate of 9% per percent strain, with complete inhibition of collagen cleavage predicted to occur at a strain of 11%. However, comparison of the EMK response (TE versus ε) to collagen’s stress-strain response (σ versus ε) suggested the possibility of three different EMK responses: (1) constant TE(ε) within the toe region (ε<3%), (2) a rapid decrease (50%) in the transition of the toe-to-heel region (ε3%) followed by (3) a constant value throughout the heel (ε=35%) and linear (ε=510%) regions. This observation suggests that the mechanism for the strain-dependent inhibition of enzyme cleavage of the collagen triple helix may be by a conformational change in the triple helix since the decrease in TE(ε) appeared concomitant with stretching of the collagen molecule.

1.
Overall
,
C. M.
, 2002, “
Molecular Determinants of Metalloproteinase Substrate Specificity: Matrix Metalloproteinase Substrate Binding Domains, Modules, and Exosites
,”
Mol. Biotechnol.
,
22
(
1
), pp.
51
86
. 1073-6085
2.
Little
,
C. B.
,
Flannery
,
C. R.
,
Hughes
,
C. E.
,
Goodship
,
A.
, and
Caterson
,
B.
, 2005, “
Cytokine Induced Metalloproteinase Expression and Activity Does Not Correlate With Focal Susceptibility of Articular Cartilage to Degeneration
,”
Osteoarthritis Cartilage
,
13
(
2
), pp.
162
170
. 1063-4584
3.
Lin
,
P. M.
,
Chen
,
C. T.
, and
Torzilli
,
P. A.
, 2004, “
Increased Stromelysin-1 (MMP-3), Proteoglycan Degradation (3B3- and 7D4) and Collagen Damage in Cyclically Load-Injured Articular Cartilage
,”
Osteoarthritis Cartilage
,
12
(
6
), pp.
485
496
. 1063-4584
4.
Lauer-Fields
,
J. L.
,
Juska
,
D.
, and
Fields
,
G. B.
, 2002, “
Matrix Metalloproteinases and Collagen Catabolism
,”
Biopolymers
,
66
(
1
), pp.
19
32
. 0006-3525
5.
Mookhtiar
,
K. A.
, and
Van Wart
,
H. E.
, 1992, “
Clostridium Histolyticum Collagenases: A New Look at Some Old Enzymes
,”
Matrix Suppl.
,
1
, pp.
116
126
. 0940-1199
6.
Matsushita
,
O.
,
Jung
,
C. M.
,
Minami
,
J.
,
Katayama
,
S.
,
Nishi
,
N.
, and
Okabe
,
A.
, 1998, “
A Study of the Collagen-Binding Domain of a 116-kDa Clostridium Histolyticum Collagenase
,”
J. Biol. Chem.
,
273
(
6
), pp.
3643
3648
. 0021-9258
7.
Lin
,
H.
,
Clegg
,
D. O.
, and
Lal
,
R.
, 1999, “
Imaging Real-Time Proteolysis of Single Collagen I Molecules With an Atomic Force Microscope
,”
Biochemistry
0006-2960,
38
(
31
), pp.
9956
9963
.
8.
Wu
,
W.
,
Billinghurst
,
R. C.
,
Pidoux
,
I.
,
Antoniou
,
J.
,
Zukor
,
D.
,
Tanzer
,
M.
, and
Poole
,
A. R.
, 2002, “
Sites of Collagenase Cleavage and Denaturation of Type II Collagen in Aging and Osteoarthritic Articular Cartilage and Their Relationship to the Distribution of Matrix Metalloproteinase 1 and Matrix Metalloproteinase 13
,”
Arthritis Rheum.
,
46
(
8
), pp.
2087
2094
. 0004-3591
9.
Huang
,
C.
, and
Yannas
,
I. V.
, 1977, “
Mechanochemical Studies of Enzymatic Degradation of Insoluble Collagen Fibers
,”
J. Biomed. Mater. Res.
0021-9304,
11
(
1
), pp.
137
154
.
10.
Nabeshima
,
Y.
,
Grood
,
E. S.
,
Sakurai
,
A.
, and
Herman
,
J. H.
, 1996, “
Uniaxial Tension Inhibits Tendon Collagen Degradation by Collagenase In Vitro
,”
J. Orthop. Res.
0736-0266,
14
(
1
), pp.
123
130
.
11.
Ruberti
,
J. W.
, and
Hallab
,
N. J.
, 2005, “
Strain-Controlled Enzymatic Cleavage of Collagen in Loaded Matrix
,”
Biochem. Biophys. Res. Commun.
,
336
(
2
), pp.
483
489
. 0006-291X
12.
Welgus
,
H. G.
,
Jeffrey
,
J. J.
,
Stricklin
,
G. P.
,
Roswit
,
W. T.
, and
Eisen
,
A. Z.
, 1980, “
Characteristics of the Action of Human Skin Fibroblast Collagenase on Fibrillar Collagen
,”
J. Biol. Chem.
,
255
(
14
), pp.
6806
6813
. 0021-9258
13.
Yoshihara
,
K.
,
Matsushita
,
O.
,
Minami
,
J.
, and
Okabe
,
A.
, 1994, “
Cloning and Nucleotide Sequence Analysis of the colH Gene From Clostridium Histolyticum Encoding a Collagenase and a Gelatinase
,”
J. Bacteriol.
,
176
(
21
), pp.
6489
6496
. 0021-9193
14.
Tzafriri
,
A. R.
,
Bercovier
,
M.
, and
Parnas
,
H.
, 2002, “
Reaction Diffusion Model of the Enzymatic Erosion of Insoluble Fibrillar Matrices
,”
Biophys. J.
,
83
(
2
), pp.
776
793
. 0006-3495
15.
Woessner
,
J. F.
, Jr.
, 1961, “
The Determination of Hydroxyproline in Tissue and Protein Samples Containing Small Proportions of This Imino Acid
,”
Arch. Biochem. Biophys.
0003-9861,
93
, pp.
440
447
.
16.
Edwards
,
C. A.
, and
O'Brien
,
W. D.
, Jr.
, 1980, “
Modified Assay for Determination of Hydroxyproline in a Tissue Hydrolyzate
,”
Clin. Chim. Acta
,
104
(
2
), pp.
161
167
. 0009-8981
17.
Farndale
,
R. W.
,
Sayers
,
C. A.
, and
Barrett
,
A. J.
, 1982, “
A Direct Spectrophotometric Microassay for Sulfated Glycosaminoglycans in Cartilage Cultures
,”
Connect. Tissue Res.
,
9
(
4
), pp.
247
248
. 0300-8207
18.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
, 1986, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
,
883
(
2
), pp.
173
177
. 0006-3002
19.
Rigby
,
B.
,
Hirai
,
N.
,
Spikes
,
J.
, and
Eyring
,
H.
, 1959, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
0022-1295,
43
, pp.
265
282
.
20.
Findley
,
W.
,
Lai
,
J.
, and
Onaran
,
K.
, 1976,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
North-Holland
,
Amsterdam
.
21.
Kuznetsova
,
N.
,
Rau
,
D. C.
,
Parsegian
,
V. A.
, and
Leikin
,
S.
, 1997, “
Solvent Hydrogen-Bond Network in Protein Self-Assembly: Solvation of Collagen Triple Helices in Nonaqueous Solvents
,”
Biophys. J.
,
72
(
1
), pp.
353
362
. 0006-3495
22.
Draper
,
N.
, and
Smith
,
H.
, 1966,
Applied Regression Analysis
,
Wiley
,
New York
.
23.
Miller
,
R.
, 1980,
Simultaneous Statistical Inference
,
Springer-Verlag
,
New York
.
24.
Screen
,
H. R.
,
Shelton
,
J. C.
,
Chhaya
,
V. H.
,
Kayser
,
M. V.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 2005, “
The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles
,”
Ann. Biomed. Eng.
,
33
(
8
), pp.
1090
1099
. 0090-6964
25.
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Venn
,
M. F.
, 1980, “
Further Studies on the Composition of Human Femoral Head Cartilage
,”
Ann. Rheum. Dis.
,
39
(
5
), pp.
514
523
. 0003-4967
26.
Marsolais
,
D.
,
Duchesne
,
E.
,
Cote
,
C. H.
, and
Frenette
,
J.
, 2007, “
Inflammatory Cells Do Not Decrease the Ultimate Tensile Strength of Intact Tendons In Vivo and In Vitro: Protective Role of Mechanical Loading
,”
J. Appl. Physiol.
,
102
(
1
), pp.
11
17
. 0021-8987
27.
Scott
,
J. E.
,
Orford
,
C. R.
, and
Hughes
,
E. W.
, 1981, “
Proteoglycan-Collagen Arrangements in Developing Rat Tail Tendon. An Electron Microscopical and Biochemical Investigation
,”
Biochem. J.
,
195
(
3
), pp.
573
581
. 0264-6021
28.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
, 2003, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
726
731
.
29.
Parsegian
,
V. A.
,
Rand
,
R. P.
,
Fuller
,
N. L.
, and
Rau
,
D. C.
, 1986, “
Osmotic Stress for the Direct Measurement of Intermolecular Forces
,”
Methods Enzymol.
0076-6879,
127
, pp.
400
416
.
30.
Gomis-Ruth
,
F. X.
,
Gohlke
,
U.
,
Betz
,
M.
,
Knauper
,
V.
,
Murphy
,
G.
,
Lopez-Otin
,
C.
, and
Bode
,
W.
, 1996, “
The Helping Hand of Collagenase-3 (MMP-13): 2.7 A Crystal Structure of Its C-Terminal Haemopexin-Like Domain
,”
J. Mol. Biol.
,
264
(
3
), pp.
556
566
. 0022-2836
31.
Tam
,
E. M.
,
Moore
,
T. R.
,
Butler
,
G. S.
, and
Overall
,
C. M.
, 2004, “
Characterization of the Distinct Collagen Binding, Helicase and Cleavage Mechanisms of Matrix Metalloproteinase 2 and 14 (Gelatinase A and MT1-MMP): The Differential Roles of the MMP Hemopexin C Domains and the MMP-2 Fibronectin Type II Modules in Collagen Triple Helicase Activities
,”
J. Biol. Chem.
,
279
(
41
), pp.
43336
43344
. 0021-9258
32.
French
,
M. F.
,
Bhown
,
A.
, and
Van Wart
,
H. E.
, 1992, “
Identification of Clostridium Histolyticum Collagenase Hyperreactive Sites in Type I, II, and III Collagens: Lack of Correlation With Local Triple Helical Stability
,”
J. Protein Chem.
,
11
(
1
), pp.
83
97
. 0277-8033
33.
French
,
M. F.
,
Bhown
,
A.
, and
Van Wart
,
H. E.
, 1992, “
Limited Proteolysis of Types I, II and III Collagens at Hyper-Reactive Sites by Clostridium Histolyticum Collagenase
,”
Matrix Suppl.
,
1
, pp.
134
135
. 0940-1199
34.
Silver
,
F. H.
,
Freeman
,
J. W.
, and
Seehra
,
G. P.
, 2003, “
Collagen Self-Assembly and the Development of Tendon Mechanical Properties
,”
J. Biomech.
0021-9290,
36
(
10
), pp.
1529
1553
.
35.
Bella
,
J.
,
Brodsky
,
B.
, and
Berman
,
H. M.
, 1995, “
Hydration Structure of a Collagen Peptide
,”
Structure (London)
0969-2126,
3
(
9
), pp.
893
906
.
36.
Kramer
,
R. Z.
,
Bella
,
J.
,
Brodsky
,
B.
, and
Berman
,
H. M.
, 2001, “
The Crystal and Molecular Structure of a Collagen-Like Peptide With a Biologically Relevant Sequence
,”
J. Mol. Biol.
,
311
(
1
), pp.
131
147
. 0022-2836
37.
Leikin
,
S.
,
Rau
,
D. C.
, and
Parsegian
,
V. A.
, 1994, “
Direct Measurement of Forces Between Self-Assembled Proteins: Temperature-Dependent Exponential Forces Between Collagen Triple Helices
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
1
), pp.
276
280
.
38.
Leikin
,
S.
,
Parsegian
,
V. A.
,
Yang
,
W.
, and
Walrafen
,
G. E.
, 1997, “
Raman Spectral Evidence for Hydration Forces Between Collagen Triple Helices
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
21
), pp.
11312
11317
.
39.
Torzilli
,
P.
, 1985, “
The influence of Cartilage Conformation on Its Equilibrium Water Partition
,”
J. Orthop. Res.
,
3
, pp.
473
483
. 0736-0266
40.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
, 2002, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
72
77
.
41.
Kastelic
,
J.
,
Palley
,
I.
, and
Baer
,
E.
, 1980, “
A Structural Mechanical Model for Tendon Crimping
,”
J. Biomech.
0021-9290,
13
(
10
), pp.
887
893
.
42.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
, 1997, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
1047-8477,
122
(
1–2
), pp.
119
122
.
43.
Holmes
,
D. F.
, and
Kadler
,
K. E.
, 2006, “
The 10+4 Microfibril Structure of Thin Cartilage Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
46
), pp.
17249
17254
. 0027-8424
44.
Bozec
,
L.
, and
Horton
,
M.
, 2005, “
Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
88
(
6
), pp.
4223
4231
.
45.
Sun
,
Y. L.
,
Luo
,
Z. P.
,
Fertala
,
A.
, and
An
,
K. N.
, 2002, “
Direct Quantification of the Flexibility of Type I Collagen Monomer
,”
Biochem. Biophys. Res. Commun.
0006-291X,
295
(
2
), pp.
382
386
.
You do not currently have access to this content.