Computational speed is a major limiting factor for performing design sensitivity and optimization studies of total knee replacements. Much of this limitation arises from extensive geometry calculations required by contact analyses. This study presents a novel surrogate contact modeling approach to address this limitation. The approach involves fitting contact forces from a computationally expensive contact model (e.g., a finite element model) as a function of the relative pose between the contacting bodies. Because contact forces are much more sensitive to displacements in some directions than others, standard surrogate sampling and modeling techniques do not work well, necessitating the development of special techniques for contact problems. We present a computational evaluation and practical application of the approach using dynamic wear simulation of a total knee replacement constrained to planar motion in a Stanmore machine. The sample points needed for surrogate model fitting were generated by an elastic foundation (EF) contact model. For the computational evaluation, we performed nine different dynamic wear simulations with both the surrogate contact model and the EF contact model. In all cases, the surrogate contact model accurately reproduced the contact force, motion, and wear volume results from the EF model, with computation time being reduced from 13minto13s. For the practical application, we performed a series of Monte Carlo analyses to determine the sensitivity of predicted wear volume to Stanmore machine setup issues. Wear volume was highly sensitive to small variations in motion and load inputs, especially femoral flexion angle, but not to small variations in component placements. Computational speed was reduced from an estimated 230hto4h per analysis. Surrogate contact modeling can significantly improve the computational speed of dynamic contact and wear simulations of total knee replacements and is appropriate for use in design sensitivity and optimization studies.

1.
Noble
,
P. C.
,
Gordon
,
M. J.
,
Weiss
,
J. M.
,
Reddix
,
R. N.
,
Conditt
,
M. A.
, and
Mathis
,
K. B.
, 2005, “
Does Total Knee Replacement Restore Normal Knee Function?
,”
Clin. Orthop. Relat. Res.
0009-921X,
431
, pp.
157
165
.
2.
Mancuso
,
C. A.
,
Sculco
,
T. P.
,
Wickiewicz
,
T. L.
,
Jones
,
E. C.
,
Robbins
,
L.
,
Warren
,
R. F.
, and
Williams-Russo
,
P.
, 2001, “
Patients’ Expectations of Knee Surgery
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
83A
(
7
), pp.
1005
1012
.
3.
Weiss
,
J. M.
,
Noble
,
P. C.
,
Conditt
,
M. A.
,
Kohl
,
H. W.
,
Roberts
,
S.
,
Cook
,
K. F.
,
Gordon
,
M. J.
, and
Mathis
,
K. B.
, 2002, “
What Functional Activities Are Important to Patients With Knee Replacements?
,”
Clin. Orthop. Relat. Res.
0009-921X,
40
(
4
), pp.
172
188
.
4.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
, 2005, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
305
314
.
5.
Giddings
,
V. L.
,
Kurtz
,
S. M.
, and
Edidin
,
A. A.
, 2001, “
Total Knee Replacement Polyethylene Stresses During Loading in a Knee Simulator
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
842
847
.
6.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
323
331
.
7.
Rawlinson
,
J. J.
,
Furman
,
B. D.
,
Li
,
S.
,
Wright
,
T. M.
, and
Bartel
,
D. L.
, 2006, “
Retrieval, Experimental, and Computational Assessment of the Performance of Total Knee Replacements
,”
J. Orthop. Res.
0736-0266,
24
(
7
), pp.
1384
1394
.
8.
Zhao
,
D.
,
Sakoda
,
H.
,
Sawyer
,
W. G.
,
Banks
,
S. A.
, and
Fregly
,
B. J.
, 2008, “
Predicting Knee Replacement Damage in a Simulator Machine Using a Computational Model With a Consistent Wear Factor
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
1
), p.
011004
.
9.
Knight
,
L. A.
,
Pal
,
S.
,
Coleman
,
J. C.
,
Bronson
,
F.
,
Haider
,
H.
,
Levine
,
D. L.
,
Taylor
,
M.
, and
Rullkoetter
,
P. J.
, 2007, “
Comparison of Long-Term Numerical and Experimental Total Knee Replacement Wear During Simulated Gait Loading
,”
J. Biomech.
0021-9290,
40
(
7
), pp.
1550
1558
.
10.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
813
818
.
11.
Box
,
G. E. P.
, and
Draper
,
N. R.
, 1987, “
Empirical Model-Building and Response Surfaces
,”
Applied Probability and Statistics
(
Wiley Series in Probability and Mathematical Statistics
),
Wiley
,
New York
.
12.
Khuri
,
A. I.
, and
Cornell
,
J. A.
, 1996,
Response Surfaces: Designs and Analyses, Statistics, Textbooks and Monographs
,
Dekker
,
New York
.
13.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995, “
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,”
Applied Probability and Statistics
(
Wiley Series in Probability and Statistics
),
Wiley
,
New York
.
14.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
15.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
16.
Chen
,
S.
,
Chng
,
E. S.
, and
Alkadhimi
,
K.
, 1996, “
Regularized Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks
,”
Int. J. Control
0020-7179,
64
(
5
), pp.
829
837
.
17.
Wendland
,
H.
, 1995, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Basis Functions of Minimal Degree
,”
Adv. Comput. Math.
1019-7168,
4
(
1
), pp.
389
396
.
18.
Wahba
,
G.
, 1987, “
Spline Models for Observational Data
,”
CBMS-NSF Regional Conference Series in Applied Mathematics, Based on a Series of Ten Lectures at Ohio State University at Columbus
, Mar. 23–27,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
19.
Girosi
,
F.
, 1998, “
An Equivalence Between Sparse Approximation and Support Vector Machines
,”
Neural Comput.
0899-7667,
10
(
6
), pp.
1455
1480
.
20.
Vapnik
,
V. N.
,
Statistical Learning Theory
,
Wiley
,
New York
.
21.
Cox
,
S. E.
,
Haftka
,
R. T.
,
Baker
,
C. A.
,
Grossman
,
B.
,
Mason
,
W. H.
, and
Watson
,
L. T.
, 2001, “
A Comparison of Global Optimization Methods for the Design of a High-Speed Civil Transport
,”
J. Global Optim.
0925-5001,
21
(
4
), pp.
415
433
.
22.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1999, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
275
286
.
23.
Liu
,
B.
,
Haftka
,
R. T.
, and
Akgun
,
M. A.
, 2000, “
Two-Level Composite Wing Structural Optimization Using Response Surfaces
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
2
), pp.
87
96
.
24.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
0376-0421,
41
(
1
), pp.
1
28
.
25.
Queipo
,
N. V.
,
Pintos
,
S.
,
Rincon
,
N.
,
Contreras
,
N.
, and
Colmenares
,
J.
, 2002, “
Surrogate Modeling-Based Optimization for the Integration of Static and Dynamic Data Into a Reservoir Description
,”
J. Pet. Sci. Eng.
0920-4105,
35
(
3–4
), pp.
167
181
.
26.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
129
(
4
), pp.
370
380
.
27.
Bouzid
,
A. H.
,
De Technologie Superieure
,
E.
, and
Champliaud
,
H.
, 1998, “
On the Use of Dual Kriging Interpolation for the Evaluation of the Gasket Stress Distribution in Bolted Joints
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
, Vol.
457
, pp.
77
83
.
28.
Chang
,
P. B.
,
Williams
,
B. J.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
, 1999, “
Robust Optimization of Total Joint Replacements Incorporating Environmental Variables
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
304
310
.
29.
Lin
,
Y. C.
,
Farr
,
J.
,
Carter
,
K.
, and
Fregly
,
B. J.
, 2006, “
Response Surface Optimization for Joint Contact Model Evaluation
,”
J. Appl. Biomech.
1065-8483,
22
(
2
), pp.
120
130
.
30.
An
,
K. N.
,
Himenso
,
S.
,
Tsumura
,
H.
,
Kawai
,
T.
, and
Chao
,
E. Y. S.
, 1990, “
Pressure Distribution on Articular Surfaces: Application to Joint Stability Analysis
,”
J. Biomech.
0021-9290,
23
(
10
), pp.
1013
1020
.
31.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
(
11
), pp.
1019
1031
.
32.
Fregly
,
B. J.
,
Bei
,
Y. H.
, and
Sylvester
,
M. E.
, 2003, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
0021-9290,
36
(
11
), pp.
1659
1668
.
33.
Li
,
G. A.
,
Sakamoto
,
M.
, and
Chao
,
E. Y. S.
, 1997, “
A Comparison of Different Methods in Predicting Static Pressure Distribution in Articulating Joints
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
635
638
.
34.
Pandy
,
M. G.
,
Sasaki
,
K.
, and
Kim
,
S.
, 1998, “
A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part 1: Theoretical Construct
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
(
2
), pp.
87
108
.
35.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
, 1997, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
0021-9290,
30
(
1
), pp.
83
89
.
36.
Desjardins
,
J. D.
,
Walker
,
P. S.
,
Haider
,
H.
, and
Perry
,
J.
, 2000, “
The Use of a Force-Controlled Dynamic Knee Simulator to Quantify the Mechanical Performance of Total Knee Replacement Designs During Functional Activity
,”
J. Biomech.
0021-9290,
33
(
10
), pp.
1231
1242
.
37.
Hammersley
,
J. M.
, 1960, “
Related Problems .3. Monte-Carlo Methods for Solving Multivariable Problems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
86
(
3
), pp.
844
874
.
38.
Diwekar
,
U. M.
, 2003,
Introduction to Applied Optimization
,
Springer
,
New York
.
39.
Kalagnanam
,
J. R.
, and
Diwekar
,
U. M.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
39
(
3
), pp.
308
319
.
40.
Fregly
,
B. J.
,
Banks
,
S. A.
,
D’lima
,
D. D.
, and
Colwell
,
C. W.
, Jr.
, 2008, “
Sensitivity of Knee Replacement Contact Calculations to Kinematic Measurement Errors
,”
J. Orthop. Res.
0736-0266,
26
(
9
), pp.
1173
1179
.
41.
Cressie
,
N.
, 1992, “
Statistics for Spatial Data
,”
Terra Nova
1081-0749,
4
(
5
), pp.
613
617
.
42.
Gupta
,
A.
,
Ding
,
Y.
,
Xu
,
L.
, and
Reinikainen
,
T.
, 2006, “
Optimal Parameter Selection for Electronic Packaging Using Sequential Computer Simulations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
705
715
.
43.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
, 2002, “
Dace—A Matlab Kriging Toolbox
,” Technical Report No. IMM-TR-2002-13, Informatics and Mathematical Modelling, Technical University of Denmark.
44.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
45.
Archard
,
J. F.
, and
Hirst
,
W.
, 1956, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
1364-5021,
236
(
1206
), pp.
397
410
.
46.
Fisher
,
J.
,
Dowson
,
D.
,
Hamdzah
,
H.
, and
Lee
,
H. L.
, 1994, “
The Effect of Sliding Velocity on the Friction and Wear of Uhmwpe for Use in Total Artificial Joints
,”
Wear
0043-1648,
175
(
1–2
), pp.
219
225
.
47.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics, Theory and Applications
(
Series in Mechanical Engineering
),
McGraw-Hill
,
New York
.
48.
Daffertshofer
,
A.
,
Lamoth
,
C. J. C.
,
Meijer
,
O. G.
, and
Beek
,
P. J.
, 2004, “
PCA in Studying Coordination and Variability: A Tutorial
,”
Clin. Biomech.
,
19
(
4
), pp.
415
428
.
49.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
, 2003, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
1019
1030
.
50.
Bei
,
Y. H.
, and
Fregly
,
B. J.
, 2004, “
Multibody Dynamic Simulation of Knee Contact Mechanics
,”
Med. Eng. Phys.
1350-4533,
26
(
9
), pp.
777
789
.
51.
Laz
,
P. J.
,
Pal
,
S.
,
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2006, “
Probabilistic Finite Element Prediction of Knee Wear Simulator Mechanics
,”
J. Biomech.
0021-9290,
39
(
12
), pp.
2303
2310
.
52.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural-Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
53.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
1
13
.
54.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
55.
Bai
,
B.
,
Baez
,
J.
,
Testa
,
N. N.
, and
Kummer
,
F. J.
, 2000, “
Effect of Posterior Cut Angle on Tibial Component Loading
,”
J. Arthroplasty
0883-5403,
15
(
7
), pp.
916
920
.
56.
Blunn
,
G. W.
,
Walker
,
P. S.
,
Joshi
,
A.
, and
Hardinge
,
K.
, 1991, “
The Dominance of Cyclic Sliding in Producing Wear in Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
0009-921X,
273
, pp.
253
260
.
57.
Kawanabe
,
K.
,
Clarke
,
I. C.
,
Tamura
,
J.
,
Akagi
,
M.
,
Good
,
V. D.
,
Williams
,
P. A.
, and
Yamamoto
,
K.
, 2001, “
Effects of a-P Translation and Rotation on the Wear of Uhmwpe in a Total Knee Joint Simulator
,”
J. Biomed. Mater. Res.
0021-9304,
54
(
3
), pp.
400
406
.
58.
Barnett
,
P. I.
,
Fisher
,
J.
,
Auger
,
D. D.
,
Stone
,
M. H.
, and
Ingham
,
E.
, 2001, “
Comparison of Wear in a Total Knee Replacement Under Different Kinematic Conditions
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
12
(
10–12
),
1039
1042
.
59.
D’lima
,
D. D.
,
Hermida
,
J. C.
,
Chen
,
P. C.
, and
Colwell
,
C. W.
, 2001, “
Polyethylene Wear and Variations in Knee Kinematics
,”
Clin. Orthop. Relat. Res.
0009-921X,
392
, pp.
124
130
.
60.
Johnson
,
T. S.
,
Laurent
,
M. P.
,
Yao
,
J. Q.
, and
Gilbertson
,
L. N.
, 2001, “
The Effect of Displacement Control Input Parameters on Tibiofemoral Prosthetic Knee Wear
,”
Wear
0043-1648,
250
, pp.
222
226
.
You do not currently have access to this content.