The effects of frequency or duration of cyclic stress on the mechanical properties of collagen fascicles were studied by means of in vitro tissue culture experiments. Collagen fascicles of approximately 300μm in diameter were obtained from rabbit patellar tendons. During culture, cyclic stress having the peak stress of approximately 2MPa was applied to the fascicles at 1Hz for 1hourday (1Hz-1h group), at 1Hz for 4hoursday (1Hz-4h group), or at 4Hz for 1hourday (4Hz-1h group). The frequency of 4Hz and the duration of 1hourday are considered to be similar to those of the in vivo stress applied to fascicles in the intact rabbit patellar tendon. After culture for 1 or 2weeks, the mechanical properties of the fascicles were determined using a micro-tensile tester, and were compared to the properties of non-cultured, fresh fascicles (control group) and the fascicles cultured under no load condition (non-loaded group). The tangent modulus and tensile strength of fascicles in the 4Hz-1h group were similar to those in the control group; however, the fascicles of the 1Hz-1h and 1Hz-4h groups had significantly lower values than those of the control group. There was no significant difference in the tensile strength between the 1Hz-1h and non-loaded groups, although the strength in the 1Hz-4h group was significantly higher than that of the non-loaded group. It was concluded that the frequency and duration of cyclic stress significantly affect the mechanical properties of cultured collagen fascicles. If we apply cyclic stress having the frequency and duration which are experienced in vivo, the biomechanical properties are maintained at control, normal level. Lower frequencies or less cycles of applied force induce adverse effects.

1.
Woo
,
S. L.-Y.
,
Wang
,
C. W.
,
Newton
,
P. O.
, and
Lyon
,
R. M.
, 1990, “
The Response of Ligaments to Stress Deprivation and Stress Enhancement—Biomechanical Studies
,”
Knee Ligaments: Structure, Function, Injury, and Repair
, edited by
Daniel
,
D.
,
Akeson
,
W. H.
, and
O’Conner
,
J. J.
,
Raven Press
, New York, pp.
337
350
.
2.
Hayashi
,
K.
, 1996, “
Biomechanical Studies of the Remodeling of Knee Joint Tendons and Ligaments
,”
J. Biomech.
0021-9290,
29
, pp.
707
716
.
3.
Hayashi
,
K.
,
Yamamoto
,
N.
, and
Yasuda
,
K.
, 1996, “
Response of Knee Joint Tendons and Ligaments to Mechanical Stress
,”
Biomechanics—Functional Adaptation and Remodeling
, edited by
Hayashi
,
K.
,
Kamiya
,
A.
, and
Ono
,
K.
,
Springer-Verlag
, Tokyo, pp.
185
212
.
4.
Yasuda
,
K.
, and
Hayashi
,
K.
, 1999, “
Changes in Biomechanical Properties of Tendons and Ligaments From Joint Disuse
,”
Osteoarthritis Cartilage
1063-4584,
7
, pp.
122
129
.
5.
Woo
,
S. L.-Y.
,
Chan
,
S. S.
, and
Yamaji
,
T.
, 1997, “
Biomechanics of Knee Ligament Healing, Repair, and Reconstruction
,”
J. Biomech.
0021-9290,
30
, pp.
431
439
.
6.
Frank
,
C. B.
,
Hart
,
D. A.
, and
Shrive
,
N. G.
, 1999, “
Molecular Biology and Biomechanics of Normal and Healing Ligaments—A Review
,”
Osteoarthritis Cartilage
1063-4584,
7
, pp.
130
140
.
7.
Lin
,
T. W.
,
Cardenas
,
L.
, and
Soslowsky
,
L. J.
, 2004, “
Biomechanics of Tendon Injury and Repair
,”
J. Biomech.
0021-9290,
37
, pp.
865
877
.
8.
Yasuda
,
K.
, and
Hayashi
,
K.
, 1996, “
Remodeling of Tendon Autograft in Ligament Reconstruction
,”
Biomechanics—Functional Adaptation and Remodeling
, edited by
Hayashi
,
K.
,
Kamiya
,
A.
, and
Ono
,
K.
,
Springer-Verlag
, Tokyo, pp.
213
250
.
9.
Frank
,
C. B.
, and
Jackson
,
D. W.
, 1997, “
The Science of Reconstruction of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
79A
, pp.
1556
1576
.
10.
Noyes
,
F. R.
, 1977, “
Functional Properties of Knee Ligaments and Alterations Induced by Immobilization. A Correlative Biomechanical and Histological Study in Primates
,”
Clin. Orthop. Relat. Res.
0009-921X,
123
, pp.
210
242
.
11.
Walsh
,
S.
,
Frank
,
C. B.
,
Shrive
,
N. G.
, and
Hart
,
D. A.
, 1993, “
Knee Immobilization Inhibits Biomechanical Maturation of the Rabbit Medial Collateral Ligament
,”
Clin. Orthop. Relat. Res.
0009-921X,
297
, pp.
253
261
.
12.
Newton
,
P. O.
,
Woo
,
S. L.-Y.
,
MacKenna
,
D. A.
, and
Akeson
,
W. H.
, 1995, “
Immobilization of Knee Joint Alters the Mechanical and Ultrastructual Properties of the Rabbit Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
13
, pp.
191
200
.
13.
Larsen
,
N. P.
,
Forwood
,
M. R.
, and
Parker
,
A. W.
, 1987, “
Immobilization and Retraining of Cruciate Ligaments in the Rat
,”
Acta Orthop. Scand.
0001-6470,
58
, pp.
260
264
.
14.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
,
Sites
,
T. J.
,
Newton
,
P. O.
,
Orlando
,
C. A.
, and
Akeson
,
W. H.
, 1987, “
The Biomechanical and Morphological Changes in the Medial Collateral Ligament of the Rabbit After Immobilization and Remobilization
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
69A
, pp.
1200
1211
.
15.
Tipton
,
C. M.
,
James
,
S. L.
,
Mergner
,
W.
, and
Tchang
,
T. K.
, 1970, “
Influence of Exercise on Strength of Medial Collateral Knee Ligaments of Dogs
,”
Am. J. Physiol.
0002-9513,
218
, pp.
894
901
.
16.
Woo
,
S. L.-Y.
,
Ritter
,
M. A.
,
Amiel
,
D.
,
Sanders
,
T. M.
,
Gomez
,
M. A.
,
Kuei
,
S. C.
,
Garfin
,
S. R.
, and
Akeson
,
W. H.
, 1980, “
The Biomechanical and Biochemical Properties of Swine Tendons—Long Term Effects of Exercise on the Digital Extensors
,”
Connect. Tissue Res.
0300-8207,
7
, pp.
177
183
.
17.
Hansen
,
P.
,
Aagaard
,
P.
,
Kjaer
,
M.
,
Larsson
,
B.
, and
Magnusson
,
S. P.
, 2003, “
Effects of Habitual Running on Human Achilles Tendon Load-Deformation Properties and Cross-Sectional Area
,”
J. Appl. Physiol.
8750-7587,
95
, pp.
2375
2380
.
18.
Yamamoto
,
N.
,
Ohno
,
K.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Yasuda
,
K.
, and
Kaneda
,
K.
, 1993, “
Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
23
28
.
19.
Majima
,
T.
,
Yasuda
,
K.
,
Fujii
,
T.
,
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Kaneda
,
K.
, 1996, “
Biomechanical Effects of Stress Shielding of the Rabbit Patellar Tendon Depend on the Degree of Stress Reduction
,”
J. Orthop. Res.
0736-0266,
14
, pp.
377
383
.
20.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Kuriyama
,
H.
,
Ohno
,
K.
,
Yasuda
,
K.
, and
Kaneda
,
K.
, 1996, “
Effects of Restressing on the Mechanical Properties of Stress-Shielded Patellar Tendons in Rabbits
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
216
220
.
21.
Yamamoto
,
N.
,
Hayashi
,
K.
,
Hayashi
,
F.
,
Yasuda
,
K.
, and
Kaneda
,
K.
, 1999, “
Biomechanical Studies of the Rabbit Patellar Tendon After Removal of Its One-Fourth or a Half
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
323
329
.
22.
Yamamoto
,
E.
,
Iwanaga
,
W.
,
Miyazaki
,
H.
, and
Hayashi
,
K.
, 2002, “
Effects of Static Stress on the Mechanical Properties of Cultured Collagen Fascicles From Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
85
93
.
23.
Yamamoto
,
E.
,
Tokura
,
S.
, and
Hayashi
,
K.
, 2003, “
Effects of Cyclic Stress on the Mechanical Properties of Cultured Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
893
901
.
24.
Yamamoto
,
N.
,
Hayashi
,
K.
, and
Hayashi
,
F.
, 1992, “
In Vivo Measurement of Tension in the Rabbit Patellar Tendon
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
0387-5008,
58
, pp.
1142
1147
.
25.
Takai
,
S.
,
Woo
,
S. L.-Y.
,
Horibe
,
S.
,
Tung
,
D. K.-L.
, and
Gelberman
,
R. H.
, 1991, “
The Effects of Frequency and Duration of Controlled Passive Mobilization on Tendon Healing
,”
J. Orthop. Res.
0736-0266,
9
, pp.
705
713
.
26.
Arnoczky
,
S. P.
,
Tian
,
T.
,
Lavagnino
,
M.
,
Gardner
,
K.
,
Schuler
,
P.
, and
Morse
,
P.
, 2002, “
Activation of Stress-Activated Protein Kinases (SAPK) in Tendon Cells Following Cyclic Strain: The Effects of Strain Frequency, Strain Magnitude, and Cytosolic Calcium
,”
J. Orthop. Res.
0736-0266,
20
, pp.
947
952
.
27.
Lavagnino
,
M.
,
Arnoczky
,
S. P.
,
Tian
,
T.
, and
Vaupel
,
Z.
, 2003, “
Effects of Amplitude and Frequency of Cyclic Tensile Strain on the Inhibition of MMP-1 mRNA Expression in Tendon Cell: An In Vitro Study
,”
Connect. Tissue Res.
0300-8207,
44
, pp.
181
187
.
28.
Yamamoto
,
E.
,
Hayashi
,
K.
, and
Yamamoto
,
N.
, 1999, “
Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
124
131
.
29.
Evanko
,
S. P.
, and
Vogel
,
K. G.
, 1993, “
Proteoglycan Synthesis in Fetal Tendon Is Differentially Regulated by Cyclic Compression in Vitro
,”
Arch. Biochem. Biophys.
0003-9861,
307
, pp.
153
164
.
30.
Mass
,
D. P.
,
Tuel
,
R. J.
,
Labarbera
,
M.
, and
Greenwald
,
D. P.
, 1993, “
Effects of Constant Mechanical Tension on the Healing of Rabbit Flexor Tendons
,”
Clin. Orthop. Relat. Res.
0009-921X,
296
, pp.
301
306
.
31.
Vogel
,
K. G.
, 1996, “
The Effects of Compressive Loading on Proteoglycan Turnover in Cultured Fetal Tendon
,”
Connect. Tissue Res.
0300-8207,
34
, pp.
227
237
.
32.
Loitz
,
B. J.
,
Zernicke
,
R. F.
,
Vailas
,
A. C.
,
Kody
,
M. H.
, and
Meals
,
R. A.
, 1989, “
Effects of Short-Term Immobilization Versus Continuous Passive Motion on the Biomechanical and Biochemical Properties of the Rabbit Tendon
,”
Clin. Orthop. Relat. Res.
0009-921X,
244
, pp.
265
271
.
33.
Cabaud
,
H. E.
,
Chatty
,
A.
,
Gildengorin
,
V.
, and
Feltman
,
R. J.
, 1980, “
Exercise Effects on the Strength of the Rat Anterior Cruciate Ligament
,”
Am. J. Sports Med.
0363-5465,
8
, pp.
79
86
.
34.
Slack
,
C.
,
Flint
,
M. H.
, and
Thompson
,
B. M.
, 1984, “
The Effects of Tensional Load on Isolated Embryonic Chick Tendons in Organ Culture
,”
Connect. Tissue Res.
0300-8207,
12
, pp.
229
247
.
35.
Koob
,
T. J.
, and
Vogel
,
K. G.
, 1987, “
Proteoglycan Synthesis on Organ Cultures From Regions of Bovine Tendon Subjected to Different Mechanical Forces
,”
Biochem. J.
0264-6021,
246
, pp.
589
598
.
36.
Robbins
,
J. R.
,
Evanko
,
S. P.
, and
Vogel
,
K. G.
, 1997, “
Mechanical Loading and TGF-β Regulate Proteoglycan Synthesis in Tendon
,”
Arch. Biochem. Biophys.
0003-9861,
342
, pp.
203
211
.
You do not currently have access to this content.