The complex modulus E* and elastic modulus E of agarose gels (2% to 4%) are measured with a dynamic mechanical analyzer in frequency sweep shear sandwich mode between 0.1 and 20 Hz. The data showed that E* and E increase with frequency according to a power law which can be described by a fractional derivative model to characterize the dynamic viscoelasticity of the gel. The functions between the model parameters including storage modulus coefficient H and the power law exponent (β) and the agarose concentration are established. A molecular basis for the application of the fractional derivative model to gel polymers is also discussed. Such an approach can be useful in tissue culture studies employing dynamic pressurization or for validation of magnetic resonance elastography.

1.
Normand
,
V.
,
Lootens
,
D. L.
,
Amici
,
E.
,
Plucknett
,
K. P.
, and
Aymard
,
P.
,
2000
, “
New Insight into Agarose Gel Mechanical Properties
,”
Biomacromolecules
,
1
(
4
), pp.
730
738
.
2.
Aymard
,
P.
,
Martin
,
D. R.
,
Plucknett
,
K.
,
Foster
,
T. J.
,
Clark
,
A. H.
, and
Norton
,
I. T.
,
2001
, “
Influence of Thermal History on the Structural and Mechanical Properties of Agarose Gels
,”
Biopolymers
,
59
(
3
), pp.
131
144
.
3.
Saris
,
D. B.
,
Mukherjee
,
N.
,
Berglund
,
L. J.
,
Schultz
,
F. M.
,
An
,
K. N.
, and
O’Driscoll
,
S. W.
,
2000
, “
Dynamic Pressure Transmission through Agarose Gels
,”
Tissue Eng.
,
6
(
5
), pp.
531
537
.
4.
Muthupillai
,
R.
,
Lomas
,
D. J.
,
Rossman
,
P. J.
,
Greenleaf
,
J. F.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
1995
, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
,
269
(
5232
), pp.
1854
1857
.
5.
Ross-Murphy
,
S. B.
, and
Shatwell
,
K. P.
,
1993
, “
Polysaccharide Strong and Weak Gels
,”
Biorheology
,
30
(3–4), pp.
217
227
.
6.
Benkherourou
,
M.
,
Rochas
,
C.
,
Tracqui
,
P.
,
Tranqui
,
T.
, and
Gume˙ry
,
P. Y.
,
1999
, “
Standardization of a Method for Characterizing Low-concentration Biogels: Elastic Properties of Low-concentration Agarose Gels
,”
J. Biomech. Eng.
,
47
(
11
), pp.
184
187
.
7.
Ziemann
,
F.
,
Radler
,
J.
, and
Sackmann
,
E.
,
1994
, “
Local Measurements of Viscoelastic Moduli of Entangled Actin Networks Using an Oscillating Magnetic Bead Micro-rheometer
,”
Biophys. J.
,
66
(
6
), pp.
2210
2216
.
8.
Benkherourou
,
M.
,
Gumery
,
P. Y.
,
Tranqui
,
L.
, and
Tracqui
,
P.
,
2000
, “
Quantification and Macroscopic Modeling of the Nonlinear Viscoelastic Behavior of Strained Gels with Varying Fibrin Concentrations
,”
IEEE Trans. Biomed. Eng.
,
47
(
11
), pp.
1465
75
.
9.
Kasapis
,
S.
, and
Sablani
,
S. S.
,
2000
, “
First- and Second-approximation Calculations in the Relaxation Function of High-sugar/polysaccaride Systems
,”
Int. J. Biol. Macromol.
,
27
(
4
), pp.
301
305
.
10.
Bagley
,
R. L.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
11.
Suki
,
B.
,
Barabasi
,
A. L.
, and
Lutchen
,
K. R.
,
1994
, “
Lung Tissue Viscoelasticity: A Mathematical Framework and Its Molecular Basis
,”
J. Appl. Physiol.
,
76
(
6
), pp.
2749
2759
.
12.
Yuan
,
H.
,
Kononov
,
S.
,
Cavalcante
,
F. S.
,
Lutchen
,
K. R.
,
Ingenito
,
E. P.
, and
Suki
,
B.
,
2000
, “
Effects of Collagenase and Elastase on the Mechanical Properties of Lung Tissue Strips
,”
J. Appl. Physiol.
,
89
(
1
), pp.
3
14
.
13.
Yuan
,
H.
,
Ingenito
,
E. P.
, and
Suki
,
B.
,
1997
, “
Dynamic Properties of Lung Parenchyma: Mechanical Contributions of Fiber Network and Interstitial Cells
,”
J. Appl. Physiol.
,
83
, pp.
1420
1431
.
14.
Djordjevic
,
V. D.
,
Jaric
,
J.
,
Fabry
,
B.
,
Fredberg
,
J. J.
, and
Stamenovic
,
D.
,
2003
, “
Fractional Derivatives Embody Essential Features of Cell Rheological Behavior
,”
Ann. Biomed. Eng.
,
31
, pp.
692
699
.
15.
Csendes
,
T.
,
1988
, “
Nonlinear Parameter Estimation by a Global Optimization—Efficiency and Reliability
,”
Acta Cybern.
,
8
, pp.
361
370
.
16.
Rouse
, Jr.,
P. E.
,
1953
, “
A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers
,”
J. Chem. Phys.
,
21
(
7
), pp.
1272
1280
.
17.
De Gennes
,
P. G.
,
1971
, “
Reptation of a Polymer Chain in the Presence of Fixed Obstacles
,”
J. Chem. Phys.
,
55
, pp.
572
579
.
18.
Doi, M., and Edwards, S. F., 1986, The Theory of Polymer Dynamics, Clarendon Press, Oxford, UK, Chap. 10.
19.
Cates
,
M. E.
,
1987
, “
Reptation of Living Polymers: Dynamics of Entangled Polymers in the Presence of Reversible Chain-scission Reactions
,”
Macromolecules
,
20
, pp.
2289
2296
.
20.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
,
2003
, “
New Insight into Deformation-dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
,
36
(
4
), pp.
593
598
.
21.
Arbogast
,
K. B.
,
Thibault
,
K. L.
,
Pinheiro
,
S. B.
,
Winey
,
K. I.
, and
Margulies
,
S. S.
,
1997
, “
A High-Frequency Shear Device for Testing Soft Biological Tissues
,”
J. Biomech.
,
30
(
7
), pp.
757
759
.
22.
Balgude
,
A. P.
,
Yu
,
X.
,
Szymanski
,
A.
, and
Bellamkonda
,
R. V.
,
2001
, “
Agarose Gel Stiffness Determines Rate of DRG Neurite Extension in 3D Cultures
,”
Biomaterials
,
22
, pp.
1077
1084
.
23.
Kruse
,
S. A.
,
Smith
,
J. A.
,
Lawrence
,
A. J.
,
Dresner
,
M. A.
,
Manduca
,
A.
,
Greenleaf
,
J. F.
, and
Ehman
,
R. L.
,
2000
, “
Tissue Characterization Using Magnetic Resonance Elastography: Preliminary Results
,”
Phys. Med. Biol.
,
45
(
6
), pp.
579
1590
.
24.
Hamhaber
,
U.
,
Grieshaber
,
F. A.
,
Nagel
,
J. H.
, and
Klose
,
U.
,
2003
, “
Comparison of Quantitative Shear Wave MR-Elastography with Mechanical Compression Test
,”
Magn. Reson. Med.
,
49
, pp.
71
77
.
25.
Menard, K. P., 1999, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton, FL, Chap. 7.
26.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer, New York.
You do not currently have access to this content.