The role of osteocyte lacunar size and density on the apparent stiffness of bone matrix was predicted using a mechanical model from the literature. Lacunar size and lacunar density for different bones from different gender and age groups were used to predict the range of matrix apparent stiffness values for human cortical and cancellous tissue. The results suggest that bone matrix apparent stiffness depends on tissue type (cortical versus cancellous), age, and gender, the magnitudes of the effects being significant but small in all cases. Males had a higher predicted matrix apparent stiffness than females for vertebral cancellous bone p<107)and the difference increased with age p=0.0007. In contrast, matrix apparent stiffness was not different between males and females for femoral cortical bone and increased with age in both males p<0.0001 and females p<0.0364. Osteocyte lacunar density and size may cause significant gender and age-related variations in bone matrix apparent stiffness. The magnitude of variations in matrix apparent stiffness was small within the physiological range of lacunar size and density for healthy bone, whereas the variations can be profound in certain pathological cases. It was proposed that the mechanical effects of osteocyte density be uncoupled from their biological effects by controlling lacunar size in normal bone.

1.
Cowin
,
S. C.
,
Moss-Salentijn
,
L.
, and
Moss
,
M. L.
,
1991
, “
Candidates for the Mechanosensory System in Bone
,”
J. Biomech.
,
113
, pp.
191
197
.
2.
Aarden
,
E. M.
,
Burger
,
E. H.
, and
Nijweide
,
P. J.
,
1994
, “
Function of Osteocytes in Bone
,”
J. Cell. Biochem.
,
55
, pp.
287
299
.
3.
Duncan
,
R. L.
, and
Turner
,
C. H.
,
1995
, “
Mechanotransduction and the Functional Response of Bone to Mechanical Strain
,”
Calcif. Tissue Int.
,
57
, pp.
344
358
.
4.
Otter
,
M.
,
Goheen
,
S.
, and
Williams
,
W. S.
,
1988
, “
Streaming Potentials in Chemically Modified Bone
,”
J. Orthop. Res.
,
6
, pp.
346
359
.
5.
Otter
,
M. W.
,
Palmieri
,
V. R.
, and
Cochran
,
G. V. B.
,
1990
, “
Transcortical Streaming Potentials Are Generated by Circulatory Pressure Gradients in Living Canine Tibia
,”
J. Orthop. Res.
,
8
, pp.
119
126
.
6.
Rubin
,
C. T.
, and
Lanyon
,
L. E.
,
1985
, “
Regulation of Bone Mass by Mechanical Strain Magnitude
,”
Calcif. Tissue Int.
,
37
, pp.
411
417
.
7.
Mosley
,
J. R.
, and
Lanyon
,
L. E.
,
1998
, “
Strain Rate as a Controlling Influence on Adaptive Modeling in Response to Dynamic Loading of the Ulna in Growing Male Rats
,”
Bone
,
23
, pp.
313
318
.
8.
Prendergast
,
P. J.
, and
Huiskes
,
R.
,
1996
, “
Microdamage and Osteocyte-Lacuna Strain in Bone: A Microstructural Finite Element Analysis
,”
J. Biomech.
,
118
, pp.
240
246
.
9.
Knothe Tate
,
M. L.
,
Niederer
,
P.
, and
Knothe
,
U.
,
1998
, “
In Vivo Tracer Transport Through the Lacunocanalicular System of Rat Bone in an Environment Devoid of Mechanical Loading
,”
Bone
,
22
, pp.
107
117
.
10.
Knothe Tate
,
M. L.
,
Knothe
,
U.
, and
Niederer
,
P.
,
1998
, “
Experimental Elucidation of Mechanical Load-Induced Fluid Flow and Its Potential Role in Bone Metabolism and Functional Adaptation
,”
Am. J. Med. Sci.
,
316
, pp.
189
195
.
11.
Fyhrie
,
D. P.
, and
Kimura
,
J. H.
,
1999
, “
Nacob Presentation Keynote Lecture Cancellous Bone Biomechanics,” presented at the North American Congress on Biomechanics
;
J. Biomech.
,
32
, pp.
1139
1148
.
12.
Currey
,
J. D.
,
1962
, “
Stress Concentrations in Bone
,”
Q. J. Microsc. Sci.
,
103
, pp.
111
133
.
13.
Bonfield
,
W.
,
1987
, “
Advances in the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
,
20
, pp.
1071
1081
.
14.
Cowin
,
S. C.
,
1999
, “
Bone Poroelasticity
,”
J. Biomech.
,
32
, pp.
217
238
.
15.
Baud, C. A., 1973, “Histophysiology of the Osteocyte: An Introduction to the Morphometry of Peri-Osteocytic Lacunae,” Proc. 1st Workshop on Bone Morphometry, University of Ottawa, Ottawa, Canada, 28–31 Mar. pp. 267–272.
16.
Mullender
,
M. G.
,
Van der Meer
,
D. D.
,
Huiskes
,
R.
, and
Lips
,
P.
,
1996
, “
Osteocyte Density Changes in Aging and Osteoporosis
,”
Bone
,
18
, pp.
109
113
.
17.
Qiu
,
S.
, and
Schaffler
,
M. B.
,
1998
, “
Changes In Osteocytes, Lacunae and Canaliculi With Age in Osteons of Human Compact Bone
,” Trans. 44th Annu. Meet. — Orthop. Res. Soc., Mar. 16–19, New Orleans, LA, p. 541.
18.
Wright
,
P. H.
,
Jowsey
,
J. O.
, and
Robb
,
R. A.
,
1978
, “
Osteocyte Lacunar Area in Normal Bone, Hyperparathyroidism, Renal Disease, and Osteoporosis
,”
Surg. Forum
,
29
, pp.
558
559
.
19.
Vashishth
,
D.
,
Verborgt
,
O.
,
Divine
,
G.
,
Schaffler
,
M. B.
, and
Fyhrie
,
D. P.
,
2000
, “
Decline in Osteocyte Lacunar Density in Human Cortical Bone Predicts the Accumulation of Microcracks With Age
,”
Bone
,
26
, pp.
375
380
.
20.
Vashishth
,
D.
,
Koontz
,
J.
, and
Fyhrie
,
D.
,
2000
, “
Age-Dependence of Osteocyte Lacunar Density Is Sexually Dimorphic in Human Vertebral Cancellous Bone
,” Trans. 46th Annu. Meet.—Orthop. Res. Soc., Mar. 12–15, Orlando, FL, p. 702.
21.
Mackenzie
,
J. K.
,
1950
, “
The Elastic Constants of a Solid Containing Spherical Holes
,”
Proc. Phys. Soc. London, Sect. B
,
63
, pp.
2
11
.
22.
Demakos
,
C. B.
,
1998
, “
On the Effective Moduli of Anisotropic Composites With Aligned Ellipsoidal Inclusions
,”
J. Reinf. Plast. Compos.
,
17
, pp.
606
625
.
23.
Sissons
,
H. A.
, and
O’Connor
,
P.
,
1977
, “
Quantitative Histology of Osteocyte Lacunae in Normal Human Cortical Bone
,”
Calcif. Tissue Int.
,
22
, (Suppl.), pp.
530
533
.
24.
Sterio
,
D. C.
,
1984
, “
The Unbiased Estimator of Number and Sizes of Arbitrary Particles Using the Disector
,”
J. Microsc.
,
134
, pp.
127
136
.
25.
Gundersen
,
H. J. G.
,
1986
, “
Steriology of Arbitrary Particles
,”
J. Microsc.
,
143
, pp.
3
45
.
26.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
27.
Marotti
,
G.
,
Cane
,
V.
,
Palazzini
,
S.
, and
Palazzini
,
S.
,
1990
, “
Structure–Function Relationship in the Osteocyte
,”
Italian J. Min. Electrolyte Metabolism
,
4
, pp.
93
106
.
28.
Moore
,
K. E.
,
Hoffler
,
C. E.
,
Zysset
,
P. K.
, and
Goldstein
,
S. A.
,
1998
, “
Effect of Anatomical Location on Elastic Modulus of Human Bone Tissue Lamellae
,” Trans. 44th Annu. Meet.—Orthop. Res. Soc., Mar. 16–19, New Orleans, LA, p. 560.
29.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
, and
Goldstein
,
S. A.
,
1997
, “
Elastic Modulus of Human Cortical and Trabecular Tissue Lamellae
,” Trans. 43rd Annu. Meet.—Orthop. Res. Soc., Feb. 9–13, San Francisco, CA, p. 798.
30.
Hoffler
,
C. E.
,
Kozloff
,
K. M.
,
Moore
,
K. E.
,
Dillon
,
M. T.
, and
Goldstein
,
S. A.
,
1999
, “
Femoral Neck Bone Lamellae Elastic Properties Are Independent of Age and Gender
,” Trans. 45th Annu. Meet.—Orthop. Res. Soc., Feb. 1–4, Anaheim, CA, p. 753.
31.
Guo
,
X. E.
, and
Goldstein
,
S. A.
,
1997
, “
Is Trabecular Bone Tissue Different From Cortical Bone Tissue?
Forma
,
12
, pp.
185
196
.
32.
Cooper
,
C.
,
1993
, “
The Epidemiology of Fragility Fractures: Is There a Role for Bone Quality?
Calcif. Tissue Int.
,
53
, pp.
S23–S26
S23–S26
.
33.
Ciarelli
,
T. E.
,
Schaffler
,
M. B.
, and
Goldstein
,
S. A.
,
1999
, “
Age Effects on the Fatigue Behavior of Human Vertebral Cancellous Bone Tissue
,” Trans. 45th Annu. Meet.—Orthop. Res. Soc., Feb. 1–4, 1999, Anaheim, CA, p. 772.
34.
Riemer
,
B. A.
,
Eadie
,
J. S.
,
Wenzel
,
T. E.
,
Weissman
,
D. E.
,
Guo
,
X. E.
, and
Goldstein
,
S. A.
,
1995
, “
Microstructure and Material Property Variations in Compact and Trabecular Vertebral Bone Tissue
,” Trans. 41st Annu. Meet.—Orthop. Res. Soc., Feb. 13–16, Orlando, FL, p. 529.
35.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
, pp.
1009
1015
.
36.
Bronckers
,
A. L. J. J.
,
Goei
,
W.
,
Luo
,
G.
,
Karsenty
,
G.
,
D-Souza
,
R. N.
,
Lyaruu
,
D. M.
, and
Burger
,
E. H.
,
1996
, “
DNA Fragmentation During Bone Formation in Neonatal Rodent Assessed by Transferase Mediated End Labeling
,”
J. Bone Miner. Res.
,
11
, pp.
1281
1291
.
37.
Noble
,
B. S.
,
Stevens
,
H.
,
Loveridge
,
N.
, and
Reeve
,
J.
,
1997
, “
Identification of Apoptotic Changes in Osteocytes in Normal and Pathological Human Bone
,”
Bone
,
20
, pp.
273
282
.
38.
Verborgt
,
O.
,
Gibson
,
G. J.
, and
Schaffler
,
M. B.
,
2000
, “
Loss of Osteocyte Integrity in Association With Microdamage and Bone Remodeling After Fatigue In Vivo
,”
J. Bone Miner. Res.
,
15
, pp.
60
67
.
39.
Mullender
,
M. G.
, and
Huiskes
,
R.
,
1995
, “
Proposal for the Regulatory Mechanism of Wolff’s Law
,”
J. Orthop. Res.
,
13
, pp.
503
512
.
40.
Mullender
,
M.
,
Rietbergen
,
B.
,
Ruegsegger
,
P.
, and
Huiskes
,
R.
,
1998
, “
Effect of Mechanical Set Point of Bone Cells on Mechanical Control of Trabecular Bone Architecture
,”
Bone
,
22
, pp.
125
131
.
41.
Yeni
,
Y.
,
Hou
,
F.
,
Vashishth
,
D.
, and
Fyhrie
,
D.
,
2000
, “
Trabecular Shear Stress in Human Vertebral Cancellous Bone
,” Trans. 46th Annu. Meet.—Orthop. Res. Soc., Mar. 12–15, Orlando, FL, p. 32.
42.
Rubin
,
C.
,
Sun
,
Y. Q.
,
Hadjiargyrou
,
M.
, and
McLeod
,
K.
,
1999
, “
Increased Expression of Matrix Metalloproteinase-1 in Osteocytes Precedes Bone Resorption as Stimulated by Disuse: Evidence for Autoregulation of the Cell’s Mechanical Environment?
J. Orthop. Res.
,
17
, pp.
354
361
.
43.
Haller
,
A. C.
, and
Zimny
,
M. L.
,
1977
, “
Effects of Hibernation on Interradicular Alveolar Bone
,”
J. Dent. Res.
,
56
, pp.
1552
1557
.
44.
Kwiecinski
,
G. G.
,
Krook
,
L.
, and
Wimsatt
,
W. A.
,
1987
, “
Annual Skeletal Changes in the Little Brown Bat, Myotis Lucifugus Lucifugus, With Particular Reference to Pregnancy and Lactation
,”
Am. J. Anat.
,
178
, pp.
410
420
.
45.
Steinberg
,
B.
,
Singh
,
I. J.
, and
Mitchell
,
O. G.
,
1981
, “
The Effects of Cold Stress, Hibernation, and Prolonged Inactivity on Bone Dynamics in the Golden Hamster, Mesocricetus Auratus
,”
J. Morphol.
,
167
, pp.
43
51
.
46.
Alcobendas
,
M.
,
Baud
,
C. A.
, and
Castanet
,
J.
,
1991
, “
Structural Changes of the Periosteocytic Area in Vipera Aspis (L.) (Ophidia, Viperidae) Bone Tissues in Various Physiological Conditions
,”
Calcif. Tissue Int.
,
49
, pp.
53
57
.
47.
Baud
,
C. A.
, and
Boivin
,
G.
,
1978
, “
Effects of Hormones on Osteocyte Function and Perilacunar Walk
,”
Clin. Orthop. Relat. Res.
,
136
, pp.
270
281
.
48.
Lok, E., and Jaworski, Z. F. G., 1973, “Changes in the Perosteocytic Lacunae Size Observed Under the Experimental Conditions in the Adult Dog,” Proc. 1st Workshop on Bone Morphometry, University of Ottawa, Ottawa, Canada, 28–31 Mar., pp. 297–300.
49.
Anderson
,
M. P.
, and
Capen
,
C. C.
,
1976
, “
Fine Structural Changes of Bone Cells in Experimental Nutritional Osteodystrophy of Green Iguanas
,”
Virchows Arch. B Cell Pathol.
,
20
, pp.
169
184
.
50.
Yagodovsky
,
V. S.
,
Triftanidi
,
L. A.
, and
Gorokhova
,
G. P.
,
1976
, “
Space Flight Effects on Skeletal Bones of Rats (Light and Electron Microscopic Examination)
,”
Aviat. Space Environ. Med.
,
47
, pp.
734
738
.
51.
Foldes
,
I.
,
Rapcsak
,
M.
,
Szilagyi
,
T.
, and
Oganov
,
V. S.
,
1990
, “
Effects of Space Flight on Bone Formation and Resorption
,”
Acta Phys. Hung.
,
75
, pp.
271
285
.
52.
Duncan
,
H.
,
Mathews
,
C. H. E.
,
Crouch
,
M. M.
, and
Parfitt
,
A. M.
,
1978
, “
Bone Erosion in Rheumatoid Arthritis
,”
Henry Ford Hosp. Med. J.
,
26
, pp.
32
38
.
53.
Kronenberg, H. M., 1996, “Parathyroid Hormone: Mechanisms of Action,” in: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, M. J. Favus, ed., Lippincott-Raven, Philadelphia, pp. 68–70.
54.
Lukert, B. P., 1996, “Glucocorticoid and Drug-Induced Osteoporosis,” in: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, M. J. Favus, ed., Lippincott-Raven, Philadelphia, pp. 278–282.
55.
Halse
,
J.
,
Melsen
,
F.
, and
Mosekilde
,
L.
,
1981
, “
Iliac Crest Bone Mass and Remodelling in Acromegaly
,”
Acta Endocrinologica
,
97
, pp.
18
22
.
56.
Ezzat
,
S.
,
Melmed
,
S.
,
Endres
,
D.
,
Eyre
,
D. R.
, and
Singer
,
F. R.
,
1993
, “
Biochemical Assessment of Bone Formation and Resorption in Acromegaly
,”
J. Clin. Endocrinol. Metab.
,
76
, pp.
1452
1457
.
57.
Bromley
,
M.
, and
Woolley
,
D. E.
,
1984
, “
Chondroclasts and Osteoclasts at Subchondral Sites of Erosion in the Rheumatoid Joint
,”
Arthritis Rheum.
,
27
, pp.
968
975
.
58.
Bonucci
,
E.
,
Gherardi
,
G.
, and
Farraggiana
,
T.
,
1976
, “
Bone Changes in Hemodialyzed Uremic Subjects Comparative Light and Electron Microscope Investigations
,”
Virchows Arch. A Pathol. Anat. Histol.
,
371
, pp.
183
198
.
59.
Canalis, E., 1996, “Regulation of Bone Remodeling,” in: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, M. J. Favus, ed., Lippincott-Raven, Philadelphia, pp. 29–34.
60.
Conaway
,
H. H.
,
Diez
,
L. F.
, and
Raisz
,
L. G.
,
1986
, “
Effects of Prostacyclin and Prostaglandin E1 (PGE1) on Bone Resorption in the Presence and Absence of Parathyroid Hormone
,”
Calcif. Tissue Int.
,
38
, pp.
130
134
.
61.
Steinberg
,
B.
,
Singh
,
I. J.
, and
Mitchell
,
O. G.
,
1979
, “
Changes Observed in Bone During Hibernation Using Procion Red Dye as a Matrical Marker
,”
J. Exp. Zool.
,
210
, pp.
537
541
.
62.
Minaire
,
P.
,
Meunier
,
P.
,
Edouard
,
C.
,
Bernard
,
J.
, and
Courpron
,
P.
,
1975
, “
Histomorphometric and Biological Data on Osteoporosis Due to Immobilization
,”
Rev. Rhum Mal Osteoartic
,
42
, pp.
479
488
.
63.
Uhthoff
,
H. K.
, and
Jaworski
,
Z. F.
,
1978
, “
Bone Loss in Response to Long-Term Immobilisation
,”
J. Bone Jt. Surg., Br. Vol.
,
60-B
, pp.
420
429
.
64.
Wronski
,
T. J.
, and
Morey
,
E. R.
,
1983
, “
Inhibition of Cortical and Trabecular Bone Formation in the Long Bones of Immobilized Monkeys
,”
Clin. Orthop. Relat. Res.
,
181
, pp.
269
276
.
65.
Weinreb
,
M.
,
Rodan
,
G. A.
, and
Thompson
,
D. D.
,
1989
, “
Osteopenia in the Immobilized Rat Hind Limb Is Associated With Increased Bone Resorption and Decreased Bone Formation
,”
Bone
,
10
, pp.
187
194
.
66.
Caillot-Augusseau
,
A.
,
Lafage-Proust
,
M. H.
,
Soler
,
C.
,
Pernod
,
J.
,
Dubois
,
F.
, and
Alexandre
,
C.
,
1998
, “
Bone Formation and Resorption Biological Markers in Cosmonauts During and After a 180-Day Space Flight (Euromir 95)
,”
Clin. Chem.
,
44
, pp.
578
585
.
67.
Smith
,
S. M.
,
Wastney
,
M. E.
,
Morukov
,
B. V.
,
Larina
,
I. M.
,
Nyquist
,
L. E.
,
Abrams
,
S. A.
,
Taran
,
E. N.
,
Shih
,
C. Y.
,
Nillen
,
J. L.
,
Davis-Street
,
J. E.
,
Rice
,
B. L.
, and
Lane
,
H. W.
,
1999
, “
Calcium Metabolism Before, During, and After a 3-Mo Spaceflight: Kinetic and Biochemical Changes
,”
Am. J. Physiol.
,
277
, pp.
R1–R10
R1–R10
.
68.
Strollo
,
F.
,
1999
, “
Hormonal Changes in Humans During Spaceflight
,”
Adv. Space Biol. Med.
,
7
, pp.
99
129
.
69.
Sambrook
,
P. N.
,
Eisman
,
J. A.
,
Champion
,
G. D.
, and
Pocock
,
N. A.
,
1988
, “
Sex Hormone Status and Osteoporosis in Postmenopausal Women With Rheumatoid Arthritis
,”
Arthritis Rheum.
,
31
, pp.
973
978
.
70.
Larsson
,
K.
,
Lindh
,
E.
,
Lind
,
L.
,
Persson
,
I.
, and
Ljunghall
,
S.
,
1989
, “
Increased Fracture Risk in Hypercalcemia. Bone Mineral Content Measured in Hyperparathyroidism
,”
Acta Orthop. Scand.
,
60
, pp.
268
270
.
71.
Star
,
V. L.
, and
Hochberg
,
M. C.
,
1994
, “
Osteoporosis in Patients With Rheumatoid Diseases
,”
Rheum. Dis. Clin. North Am.
,
20
, pp.
561
576
.
72.
Cortet
,
B.
,
Flipo
,
R. M.
,
Duquesnoy
,
B.
, and
Delcambre
,
B.
,
1995
, “
Bone Tissue in Rheumatoid Arthritis (1). Bone Mineral Density and Fracture Risk
,”
Rev. Rhum Engl Ed.
,
62
, pp.
197
204
.
73.
Wark
,
J. D.
,
1996
, “
Osteoporotic Fractures: Background and Prevention Strategies
,”
Maturitas
,
23
, pp.
193
207
.
74.
Wasnich, R. D., 1996, “Epidemiology of Osteoporosis,” in: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, M. J. Favus, ed., Lippincott-Raven, Philadelphia, pp. 249–251.
75.
Ebeling
,
P. R.
,
1998
, “
Osteoporosis in Men. New Insights Into Aetiology, Pathogenesis, Prevention and Management
,”
Drugs Aging
,
13
, pp.
421
434
.
76.
Brand
,
C. A.
,
Jolley
,
D.
,
Tellus
,
M.
,
Muirden
,
K. D.
, and
Wark
,
J. D.
,
1999
, “
Risk Factors for Osteoporosis and Fracture in Patients Attending Rheumatology Outpatient Clinics
,”
Aust. N. Z. J. Med.
,
29
, pp.
197
202
.
77.
Patterson-Buckendahl
,
P.
,
Arnaud
,
S. B.
,
Mechanic
,
G. L.
,
Martin
,
R. B.
,
Grindeland
,
R. E.
, and
Cann
,
C. E.
,
1987
, “
Fragility and Composition of Growing Rat Bone After One Week in Spaceflight
,”
Am. J. Physiol.
,
252
, pp.
R240–R246
R240–R246
.
78.
Shaw
,
S. R.
,
Vailas
,
A. C.
,
Grindeland
,
R. E.
, and
Zernicke
,
R. F.
,
1988
, “
Effects of a 1-Wk Spaceflight on Morphological and Mechanical Properties of Growing Bone
,”
Am. J. Physiol.
,
254
, pp.
R78–R83
R78–R83
.
79.
Zernicke
,
R. F.
,
Vailas
,
A. C.
,
Grindeland
,
R. E.
,
Kaplansky
,
A.
,
Salem
,
G. J.
, and
Martinez
,
D. A.
,
1990
, “
Spaceflight Effects on Biomechanical and Biochemical Properties of Rat Vertebrae
,”
Am. J. Physiol.
,
258
, pp.
R1327–R1332
R1327–R1332
.
80.
Wixson
,
R. L.
,
Elasky
,
N.
, and
Lewis
,
J.
,
1989
, “
Cancellous Bone Material Properties in Osteoarthritic and Rheumatoid Total Knee Patients
,”
J. Orthop. Res.
,
7
, pp.
885
892
.
81.
Lepola
,
V.
,
Vaananen
,
K.
, and
Jalovaara
,
P.
,
1993
, “
The Effect of Immobilization on the Torsional Strength of the Rat Tibia
,”
Clin. Orthop. Relat. Res.
,
297
, pp.
55
61
.
82.
Peng
,
Z.
,
Tuukkanen
,
J.
,
Zhang
,
H.
,
Jamsa
,
T.
, and
Vaananen
,
H. K.
,
1994
, “
The Mechanical Strength of Bone in Different Rat Models of Experimental Osteoporosis
,”
Bone
,
15
, pp.
523
532
.
83.
Yang
,
J. P.
,
Bogoch
,
E. R.
,
Woodside
,
T. D.
, and
Hearn
,
T. C.
,
1997
, “
Stiffness of Trabecular Bone of the Tibial Plateau in Patients With Rheumatoid Arthritis of the Knee
,”
J. Arthroplasty
,
12
, pp.
798
803
.
84.
Kaneps
,
A. J.
,
Stover
,
S. M.
, and
Lane
,
N. E.
,
1997
, “
Changes in Canine Cortical and Cancellous Bone Mechanical Properties Following Immobilization and Remobilization With Exercise
,”
Bone
,
21
, pp.
419
423
.
85.
Eklou-Kalonji
,
E.
,
Zerath
,
E.
,
Colin
,
C.
,
Lacroix
,
C.
,
Holy
,
X.
,
Denis
,
I.
, and
Pointillart
,
A.
,
1999
, “
Calcium-Regulating Hormones, Bone Mineral Content, Breaking Load and Trabecular Remodeling Are Altered in Growing Pigs Fed Calcium-Deficient Diets
,”
J. Nutr.
,
129
, pp.
188
193
.
86.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
87.
Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneities,” in: Progress in Solid Mechanics, I. N. Sneddon and R. Hill, eds., Vol II, Chap. III, North Holland, Japan.
88.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
You do not currently have access to this content.