Tissues change in many ways in the period that they are part of a living organism. They are created in fairly repeatable structural patterns, and we know that the patterns are due to both the genes and the (mechanical) environment, but we do not know exactly what part or percentage of a particular pattern to consider the genes, or the environment, responsible for. We do not know much about the beginning of tissue construction (morphogenesis) and we do not know the methods of tissue construction. When the tissue structure is altered to accommodate a new loading, we do not know how the decision is made for the structural reconstruction. We do know that tissues grow or reconstruct themselves without ceasing to continue with their structural function, but we do not understand the processes that permit them to accomplish this. Tissues change their structures to altered mechanical environments, but we are not sure how. Tissues heal themselves and we understand little of the structural mechanics of the process. With the objective of describing the interesting unsolved mechanics problems associated with these biological processes, some aspects of the formation, growth, and adaptation of living tissues are reviewed. The emphasis is on ideas and models. Beyond the objective is the hope that the work will stimulate new ideas and new observations in the mechanical and chemical aspects of developmental biology. [S0148-0731(00)00106-0]

1.
Beloussov, L. V., 1998, The Dynamic Architecture of the Development of Organisms, Kluwer Academic Publishers, Dordrecht.
2.
Jones
,
H. H.
,
Priest
,
J. D.
,
Hayes
,
W. C.
,
Tichnor
,
C. C.
, and
Nagel
,
D.
,
1977
, “
Humeral Hypertrophy in Response to Exercise
,”
J. Bone Jt. Surg., Am. Vol.
,
59A
, pp.
204
224
.
3.
Trelstad, R. L., and Silver, F. H., 1981, “Matrix Assembly,” in: Cell Biology of the Extracellular Matrix, E. D. Hay, ed., Plenum Press, New York, pp. 179–216.
4.
Coen, E., 1999, The Art of Genes: How Organisms Make Themselves, Oxford University Press.
5.
White
,
R. J.
,
1998
, “
Weightlessness and the Human Body
,”
Sci. Am.
,
Sept
.
6.
Young
,
L. R.
,
1993
, Guest Editorial: “
Space and the Vestibular System: What Has Been Learned?
J. Vestib. Res.
,
3
, pp.
203
206
.
7.
Cowin, S. C., and Moss, M. L., 2000, “Mechanosensory Mechanisms in Bone,” in: Textbook of Tissue Engineering, 2nd ed., Lanza, R., Langer, R., and Chick, W., eds., Academic Press, San Diego, pp. 723–738.
8.
Weinbaum
,
S.
,
Cowin
,
S. C.
, and
Zeng
,
Yu
,
1994
, “
A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses
,”
J. Biomech.
,
27
, pp.
339
360
.
9.
You, L., Cowin, S. C., Schaffler, M., and Weinbaum, S., 2000, “A Model for Strain Amplification in the Actin Cytoskeleton of Osteocytes Due to Fluid Drag on Pericellular Matrix,” J. Biomech., submitted.
10.
Baer
,
E.
,
Hiltner
,
A.
, and
Morgan
,
R.
,
1992
, “
Biological and Synthetic Hierarchical Composites
,”
Phys. Today
,
Oct.
, pp.
60
67
.
11.
Woodhead-Galloway, J., 1980, Collagen: The Anatomy of a Protein (Studies in Biology No. 117), Arnold, London.
12.
Anonymous, 1994, Hierarchical Structures in Biology as a Guide for New Materials Technology, Committee on Synthetic Hierarchical Structures, National Materials Advisory Board, National Research Council, NMAB-464, National Academy Press, Washington, DC.
13.
Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M., 1976, Mechanical Design in Organisms, Edward Arnold.
14.
Held, Jr., L. I., 1992, Models for Embryonic Periodicity, Monographs in Developmental Biology, Vol. 24, Karger.
15.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. London, Ser. B
,
B237
, pp.
37
72
.
16.
Murray, J. D., 1993, Mathematical Biology, Springer-Verlag, New York.
17.
Winfree, A. T., 1980, The Geometry of Biological Time, Springer, New York.
18.
Mullender
,
M. G.
, and
Huiskes
,
R.
,
1995
, “
Proposal for the Regulatory Mechanism of Wolff’s Law
,”
J. Orthop. Res.
,
13
, pp.
503
512
.
19.
Weinans, H., Huiskes, R., and Grootenboer, H. J., 1990, “Numerical Comparisons of Strain-Adaptive Bone-Remodeling Theories,” Abstracts of the 1st World Congress on Biomechanics, II, p. 75.
20.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
, pp.
1425
1441
.
21.
Timoshenko, S., and Gere, J. M., 1961, Theory of Elastic Stability, McGraw-Hill, New York, 2nd ed.
22.
Green
,
P. B.
,
Steele
,
C. R.
, and
Rennich
,
S. C.
,
1996
, “
Phyllotactic Patterns: A Biophysical Mechanism for Their Origin
,”
Ann. Bot. (London)
,
77
, pp.
515
527
.
23.
Harris
,
A. K.
,
1984
, “
Cell Traction and the Generation of Anatomical Structure
,”
Lect. Notes Biomath.
,
55
, pp.
104
122
.
24.
Harris
,
A. K.
,
Stopak
,
D.
, and
Warner
,
P.
,
1984
, “
Generation of Spatially Periodic Patterns by Mechanical Instability: A Mechanical Alternative to the Turing Model
,”
J. Embryol. Exp. Morphol.
,
80
, pp.
1
20
.
25.
Halken, H., 1978, Synergetics, Springer-Verlag.
26.
Belintsev
,
B. N.
,
Beloussov
,
L. V.
, and
Zaraisky
,
A. G.
,
1987
, “
Model of Pattern Formation in Epithelial Morphogenesis
,”
J. Theor. Biol.
,
129
, pp.
369
394
.
27.
Green
,
P. B.
,
1999
, “
Expression of Pattern in Plants: Combining Molecular and Calculus-Based Biophysical Paradigms
,”
American J. Botany
,
86
, pp.
1059
1076
.
28.
Dumais, J. and Steele, C. R., 2000, “New Evidence for the Role of Mechanical Forces in the Shoot Apical Meristem,” J. Plant Growth Regulation, in press.
29.
Green, P. B., Steele, C. S., and Rennich, S. C., 1998, “How Plants Produce Pattern. A Review and a Proposal That Undulating Field Behavior Is the Mechanism,” Symmetry in Plants, R. N. Jean and D. Barabe´, eds., World Scientific, Singapore.
30.
Murray
,
J. D.
,
Oster
,
G. F.
, and
Harris
,
A. K.
,
1983
, “
A Mechanical Model for Mesenchymal Morphogenesis
,”
J. Math. Biol.
,
17
, pp.
125
129
.
31.
Stein, A. A., 1994, “Self-Organization in Biological Systems as a Result of Interaction Between Active and Passive Mechanical Stresses: Mathematical Model,” Biomechanics of Active Movement and Division of Cells, N. Akkas, ed., NATO ASI Series, H 84, Springer, pp. 459–464.
32.
Melikhov
,
A. V.
,
Regirer
,
S. A.
, and
Stein
,
A. A.
,
1983
, “
Mechanical Stresses as a Factor in Morphogenesis
,”
Sov. Phys. Dokl.
,
28
, pp.
636
638
.
33.
Stein, A. A., 2000, personal communication, 2/9/00.
34.
Stein
,
A. A.
, and
Logvenkov
,
S. A.
,
1993
, “
Spatial Self-Organization of a Layer of Biological Material Growing on a Substrate
,”
Phys. Dokl.
,
38
, pp.
75
78
.
35.
Beloussov, L. V., 1997, “Mechanical Stresses in Animal Development: Patterns and Morphogenetical Role,” Dynamics of Cell and Tissue Motion, W. Alt, A. Deutsch, and G. Dunn, eds., Birkhauser, pp. 221–228.
36.
Hejnowicz, Z., and Sievers, A., 1997, “Tissue Stresses in Plant Organs: Their Origin and Importance for Movements,“ Dynamics of Cell and Tissue Motion, W. Alt, A. Deutsch, and G. Dunn, eds., Birkhauser, pp. 235–242.
37.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
, pp.
455
468
.
38.
Hoger
,
A.
,
1997
, “
Virtual Configurations and Constitutive Equations for Residually Stressed Bodies With Material Symmetry
,”
J. Elast.
,
48
, pp.
125
144
.
39.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1988
, “
Zero-Stress States of Arteries
,”
ASME J. Biomech. Eng.
,
110
, pp.
82
84
.
40.
Stein, A. A., Rutz, M., and Zieschang, H., 1997, “Mechanical Forces and Signal Transduction in Growth and Bending of Plant Roots,” Dynamics of Cell and Tissue Motion, W. Alt, A. Deutsch, and G. Dunn, eds., Birkhauser, pp. 255–265.
41.
Trelstad
,
R. L.
, and
Hayashi
,
K.
,
1979
, “
Tendon Fibrillogenesis: Intracellular Collagen Subassemblies and Cell Surface Charges Associated With Fibril Growth
,”
Dev. Biol.
,
7
, pp.
228
242
.
42.
Trelstad, R. L., 1984, The Role of Extracellular Matrix in Development, Alan R. Liss, New York.
43.
Schmidt-Nielsen, K., 1983 Animal Physiology: Adaptation and Environment, 3rd ed., Cambridge University Press, Cambridge, UK, pp. 162–163.
44.
Bard, J., 1990, “Morphogenesis,” Developmental Cell Biology Series, 23, Cambridge University Press, Cambridge.
45.
Jarvis
,
M. C.
,
1992
, “
Self-Assembly of Plant Cell Walls
,”
Plant, Cell Environment
,
15
, pp.
1
5
.
46.
Ra¨dler
,
J. O.
,
Koltover
,
I.
,
Salditt
,
T.
, and
Safinya
,
C. R.
,
1997
, “
Structure of DNA–Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes
,”
Science
,
275
, pp.
810
814
.
47.
Harris, A. K., 1994, “Multicellular Mechanics in the Creation of Anatomical Structures,” Biomechanics of Active Movement and Division of Cells, N. Akkas, ed., Springer-Verlag, pp. 87–129.
48.
Odell
,
G. M.
,
Oster
,
G. F.
,
Alberch
,
P.
, and
Burnside
,
B.
,
1981
, “
The Mechanical Basis of Morphogenesis I. Epithelial Folding and Invagination
,”
Dev. Biol.
,
85
, pp.
446
462
.
49.
Oster
,
G. F.
,
Murray
,
J. D.
, and
Harris
,
A. K.
,
1983
, “
Mechanical Aspects of Mesenchymal Morphogenesis
,”
J. Embryol. Exp. Morphol.
,
78
, pp.
83
125
.
50.
Manoussaki
,
D.
,
Lubkin
,
S. R.
,
Vernon
,
R. B.
, and
Murray
,
J. D.
,
1996
, “
A Mechanical Model for the Formation of Vascular Networks in Vitro
,”
Acta Biotheor.
,
44
, pp.
271
282
.
51.
Taber
,
L.
,
2000
, “
Pattern Formation in a Non-Linear Membrane Model for Epithelial Morphogenesis
,”
Acta Biotheor.
,
48
, pp.
47
63
.
52.
Harrison, L. G., 1993, “Kinetic Theory of Living Patterns,” Developmental and Cell Biology Series, Vol. 28, Cambridge University Press, Cambridge.
53.
Taber
,
L.
,
1995
, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
,
48
, pp.
487
545
.
54.
Taber
,
L.
,
1998
, “
Mechanical Aspects of Cardiac Development
,”
Prog. Biophys. Mol. Biol.
,
69
, pp.
237
255
.
55.
Cowin
,
S. C.
,
1998
, “
On Mechanosensation in Bone Under Microgravity
,”
Bone
,
22
, pp.
119S–125S
119S–125S
.
56.
Harris
,
A. K.
,
Wild
,
P.
, and
Stopak
,
D.
,
1980
, “
Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion
,”
Science
,
208
, pp.
177
179
.
57.
Harris, A. K., 1999, personal communication, 11/22/99.
58.
Harris
,
A. K.
,
Stopak
,
D.
, and
Wild
,
P.
,
1981
, “
Fibroblast Traction as a Mechanism for Collagen Morphogenesis
,”
Nature (London)
,
290
, pp.
249
251
.
59.
Peskin
,
C. S.
,
Odell
,
G. M.
, and
Oster
,
G. F.
,
1993
, “
Cellular Motions and Thermal Fluctuations: The Brownian Ratchet
,”
Biophys. J.
,
65
, pp.
316
324
.
60.
Lorch, J., 1975, “The Charisma of Crystals in Biology,” The Interaction Between Science and Philosophy, Y. Elkana, ed., Humanities Press.
61.
MacKay, A. L. 1999, “Crystal Souls (A Translation of 62),” FORMA, 14, pp. 1–146.
62.
Haeckel, E., 1917, Kristallseelen-Studien Fiber Das Anorganische Leben, Alfred Kroner Verlag, Leibzig.
63.
Bouligand
,
Y.
,
1972
, “
Twisted Fibrous Arrangements in Biological Materials and Cholesteric Mesophases
,”
Tissue Cell
,
4
, pp.
189
217
.
64.
Bouligand
,
Y.
,
Denefle
,
J.-P.
,
Lechaire
,
J.-P.
, and
Maillard
,
M.
,
1985
, “
Twisted Architectures in Cell-Free Assembled Collagen Gels: Study of Collagen Substrates Used For Cultures
,”
Biol. Cell
,
54
, pp.
143
162
.
65.
Neville, A. C., 1993, Biology of Fibrous Composites, Cambridge University Press, Cambridge.
66.
Giraud-Guille
,
M. M.
,
1992
, “
Liquid Crystallinity in Condensed Type I Collagen Solutions a Clue to the Packing of Collagen in Extracellular Matrices
,”
J. Mol. Biol.
,
224
, pp.
861
873
.
67.
Giraud-Guille
,
M. M.
,
1996
, “
Twisted Liquid Crystalline Supramolecular Arrangements in Morphogenesis
,”
Int. Rev. Cytol.
,
166
, pp.
59
101
.
68.
Rey
,
A. D.
,
1996
, “
Phenomenological Theory of Textured Mesophase Polymers in Weak Flows
,”
Macromol. Theory Simul.
,
5
, pp.
863
876
.
69.
Roux, W., 1895, “The Problems, Methods, and Scope of Developmental Mechanics,” An Introduction to “Archiv Fu¨r Entwickelungsmechanik Der Organismen,” translated by W. M. Wheeler, Wood’s Hole Biol. Lect., pp. 149–190.
70.
D’Arcy Thompson, W., 1942, On Growth and Form, Cambridge, Cambridge University Press.
71.
Regirer, S. A., and Stein, A. A., 1985, “Mechanical Aspects of Growth, Development and Remodeling Processes in Biological Tissues,” Advances in Science and Technology, Ser. Complex and Special Sections of Mechanics,
1
, pp.
3
142
, VINITI (Soviet Institute of Scientific and Technical Information), Moscow [in Russian].
72.
Cowin
,
S. C.
,
1999
, “
Structural Change in Living Tissues
,”
Meccanica
,
34
, pp.
379
398
.
You do not currently have access to this content.