In the present study, finite element calculations are performed of blood flow in the carotid artery bifurcation under physiological flow conditions. The numerical results are compared in detail with laser-Doppler velocity measurements carried out in a perspex model. It may be concluded that the numerical model as presented here is well capable in predicting axial and secondary flow of incompressible Newtonian fluids in rigid-walled three-dimensional geometries. With regard to the flow phenomena occurring, a large region with reversed axial flow is found in the carotid sinus opposite to the flow divider. This region starts to grow at peak systole, has its maximal shape at minimal flow rate and totally disappears at the start of the acceleration phase. C-shaped axial velocity contours are formed in the deceleration phase, which are highly influenced by secondary flows. These latter flows are mainly induced by centrifugal forces, flow branching, and tapering of the carotid sinus. Lowering the sinus angle, the angle between the main branch and the carotid sinus, results in a smaller region with reversed axial flow.

1.
Barnes
R. W.
,
Rittgers
S. E.
, and
Putney
W. W.
,
1982
, “
Real-time Doppler spectrum analysis: predictive value in defining operable carotid artery disease
,”
Arch. Surg
, Vol.
117
, pp.
52
57
.
2.
Bharadvaj
B. K.
,
Mabon
R. F.
, and
Giddens
D. P.
,
1982
, “
Steady flow in a model of the human carotid bifurcation, Part 1-Flow visualization, Part 2-Laser-Doppler anemometer measurements
,”
J. Biomech.
, Vol.
15
, pp.
349
378
.
3.
Bovendeerd
P. H. M.
,
Steenhoven
A. A. v.
,
Vosse
F. N. v. d.
, and
Vossers
G.
,
1987
, “
Steady entry flow in a curved pipe
,”
J. Fluid Mech.
, Vol.
177
, pp.
233
246
.
4.
Cho
Y. I.
,
Back
L. H.
, and
Crawford
D. W.
,
1985
, “
Experimental investigation of branch flow ratio, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models
,”
ASME J. BIOCHEM. ENG.
Vol.
107
, pp.
257
267
.
5.
Caro
C. G.
,
Fitz-Gerald
J. M.
, and
Schroter
R. C.
,
1971
, “
Atheroma and arterial wall shear
,”
Proc. Roy. Soc. London
, B, Vol.
177
, pp.
109
159
.
6.
Cuvelier, C., Segal, A., and Steenhoven, A. A., van, 1986, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Comp., Dordrecht.
7.
Dewey
C. F.
,
Bussolari
S. R.
,
Gimbrone
M. A.
, and
Davies
P. F.
,
1981
, “
The dynamic response of vascular endothelial cells to fluid shear stress
,”
J. Biomech.
, Vol.
103
, pp.
177
185
.
8.
Fernandez
R. C.
,
de Witt
K. J.
, and
Botwin
M. R.
,
1976
, “
Pulsatile flow through a bifurcation with applications to arterial disease
,”
J. Biomech.
, Vol.
9
, pp.
575
580
.
9.
Florian
H.
, and
Perktold
K.
,
1982
, “
Finite Elemente-Computer-Simulation fu¨r eine pulsierende StrO¨mung in einer arteriellen Verzweigung
,”
Biomed. Technik
, Vol.
27
, pp.
79
84
.
10.
Glagov
S.
,
Zarins
C.
,
Giddens
D. P.
, and
Ku
D. N.
,
1988
, “
Hemodynamics and Atherosclerosis
,”
Arch. Pathol. Lab. Med.
, Vol.
112
, pp.
1018
1031
.
11.
Ku
D. N.
, and
Giddens
D. P.
,
1983
, “
Pulsatile Flow in a Model Carotid Bifurcation
,”
Arteriosclerosis
, Vol.
3
, pp.
31
39
.
12.
Ku
D. N.
,
Giddens
D. P.
,
Phillips
D. J.
, and
Strandness
D. E.
,
1985
, “
Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies
,”
Ultrasound in Med. & Biol.
, Vol.
11
, pp.
13
26
.
13.
Ku
D. N.
, and
Giddens
D. P.
,
1987
, “
Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation
,”
J. Biomech.
, Vol.
20
, pp.
407
421
.
14.
Merode
T. van
,
Hick
P. J. J.
,
Hoeks
A. P. G.
, and
Reneman
R. S.
,
1988
, “
The diagnosis of minor to moderate atherosclerotic lesions in the carotid artery bifurcation by means of spectral broadening combined with the direct detection of flow disturbances using a multi-gate pulsed Doppler system
,”
Ultrasound in Med & Biol.
, Vol.
14
, pp.
459
464
.
15.
O’Brien
V.
,
Ehrlich
L. W.
, and
Friedman
M. H.
,
1976
, “
Unsteady Flow in a Branch
,”
J. Fluid Meek
, Vol.
75
, pp.
315
336
.
16.
Olson, D. E., 1971, “Fluid mechanics relevant to respiration: flow within curved or elliptical tubes and bifurcating systems,” PhD thesis, University of London.
17.
Palmen, D. E. M., 1994, “The influence of minor stenoses on carotid artery flow,” PhD thesis, Eindhoven University of Technology, The Netherlands.
18.
Perktold
K.
, and
Hilbert
D.
,
1986
, “
Numerical Simulation of Pulsatile Flow in a Carotid Bifurcation Model
,”
J. Biomed. Eng.
, Vol.
8
, pp.
193
199
.
19.
Perktold
K.
, and
Resch
M.
,
1990
, “
Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis
,”
J. Biomed. Eng.
, Vol.
12
, pp.
111
123
.
20.
Reuderink, P. J., 1991, “Analysis of the flow in a 3D distensible model of the carotid artery bifurcation,” PhD thesis, Eindhoven University of Technology, The Netherlands.
21.
Rindt
C. C. M.
,
Vosse
F. N., van de
,
Steenhoven
A. A., van
,
Janssen
J. D.
, and
Reneman
R. S.
,
1987
, “
A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation
,”
J. Biomech.
, Vol.
20
, pp.
499
509
.
22.
Rindt
C. C. M.
,
Steenhoven
A. A. v.
, and
Reneman
R. S.
,
1988
, “
An experimental analysis of the flow field in a three-dimensional model of the human carotid artery bifurcation
,”
J. Biomech.
, Vol.
21
, pp.
985
991
.
23.
Rindt
C. C. M.
,
Steenhoven
A. A. v.
,
Janssen
J. D.
,
Reneman
R. S.
, and
Segal
A.
,
1990
, “
A numerical analysis of steady flow in a three-dimensional model of the carotid artery bifurcation
,”
J. Biomech.
, Vol.
23
, pp.
461
473
.
24.
Rindt
C. C. M.
,
Steenhoven
A. A. v.
,
Janssen
J. D.
, and
Vossers
G.
,
1991
, “
Unsteady entrance flow in a 90° curved tube
,”
J. Fluid Mech.
, Vol.
226
, pp.
445
474
.
25.
Roederer
G. O.
,
Langlois
Y. E.
,
Jager
K. A.
,
Primozich
J. F.
,
Beach
K. W.
,
Phillips
D. J.
, and
Strandness
D. E.
,
1984
, “
The natural history of carotid arterial disease in asymptomatic patients with cervical bruits
,”
Stroke
, Vol.
15
, pp.
605
613
.
26.
Segal, A., 1984, “Sepran User Manual and Programmers Guide,” Ingenieurs buro Sepra, Leidschendam.
27.
Thurston, G. B., 1989, “Rheological analogs for human blood in large vessels,” 2nd International Symposium on Biofluid Mechanics and Biorheology in Large Blood Vessels, Munich, June 25–28.
28.
Vosse
F. N. van de
,
Segal
A.
,
Steenhoven
A. A. van
, and
Janssen
J. D.
,
1986
, “
A finite element approximation of the unsteady 2D-Navier-Stokes equations
,”
Int. J. Num. Meth. Fluids
, Vol.
6
, pp.
427
443
.
29.
Zarins
C. K.
,
Giddens
D. P.
,
Bharadvaj
B. K.
,
Sottiurai
V. S.
,
Mabon
R. F.
, and
Glagov
S.
,
1983
, “
Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress
,”
Circulation Res.
, Vol.
53
, pp.
502
514
.
This content is only available via PDF.
You do not currently have access to this content.