Silling,
S. A.
,
Epton,
M.
,
Weckner,
O.
,
Xu,
J.
, and
Askari,
E.
, 2007, “
Peridynamic States and Constitutive Modeling,” J. Elasticity,
88(2), pp. 151–184.

[CrossRef]
Pfeffer,
W. F.
, 1987, “
On the Continuity of the Volterra Variational Derivative,” J. Funct. Anal.,
71(1), pp. 195–197.

[CrossRef]
van Leeuwen,
R.
, and
Baerends,
E. J.
, 1995, “
Energy Expressions in Density-Functional Theory Using Line Integrals,” Phys. Rev. A,
51(1), p. 170.

[CrossRef] [PubMed]
Bazant,
Z. P.
, and
Jirásek,
M.
, 2002, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress,” J. Eng. Mech.,
128(11), pp. 1119–1149.

[CrossRef]
Haltas,
I.
, and
Ulusoy,
S.
, 2015, “
Scaling and Scale Invariance of Conservation Laws in Reynolds Transport Theorem Framework,” Chaos,
25(7), p. 075406.

[CrossRef] [PubMed]
Horstemeyer,
M. F.
, and
Bammann,
D. J.
, 2010, “
Historical Review of Internal State Variable Theory for Inelasticity,” Int. J. Plast.,
26(9), pp. 1310–1334.

[CrossRef]
Toupin,
R. A.
, 1964, “
Theories of Elasticity With Couple-Stress,” Arch. Ration. Mech. Anal.,
17(2), pp. 85–112.

[CrossRef]
Wang,
C. M.
,
Reddy,
J. N.
, and
Lee,
K. H.
, 2000, Shear Deformable Beams and Plates: Relationships With Classical Solutions,
Elsevier, Oxford, UK.

Reddy,
J. N.
, 2017, Energy Principles and Variational Methods in Applied Mechanics, 3rd ed.,
Wiley, New York.

Jasiuk,
I.
, and
Ostoja-Starzewski,
M.
, 1995, “
Planar Cosserat Elasticity of Materials With Holes and Intrusions,” ASME Appl. Mech. Rev.,
48(11S), pp. S11–S18.

[CrossRef]
Bouyge,
F.
,
Jasiuk,
I.
,
Boccara,
S.
, and
Ostoja-Starzewski,
M.
, 2002, “
A Micromechanically Based Couple-Stress Model of an Elastic Orthotropic Two-Phase Composite,” Eur. J. Mech. A,
21(3), pp. 465–481.

[CrossRef]
Yoo,
A.
, and
Jasiuk,
I.
, 2006, “
Couple-Stress Moduli of a Trabecular Bone Idealized as a 3D Periodic Cellular Network,” J. Biomech.,
39(12), pp. 2241–2252.

[CrossRef] [PubMed]
Fleck,
N. A.
, and
Hutchinson,
J. W.
, 1993, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity,” J. Mech. Phys. Solids,
41(12), pp. 1825–1857.

[CrossRef]
Mindlin,
R. D.
, and
Eshel,
N. N.
, 1968, “
On First Strain-Gradient Theories in Linear Elasticity,” Int. J. Solids Struct.,
4(1), pp. 109–124.

[CrossRef]
Hadjesfandiari,
A. R.
, and
Dargush,
G. F.
, 2011, “
Couple Stress Theory for Solids,” Int. J. Solids Struct.,
48(18), pp. 2496–2510.

[CrossRef]
Srinivasa,
A. R.
, and
Reddy,
J. N.
, 2013, “
A Model for a Constrained, Finitely Deforming, Elastic Solid With Rotation Gradient Dependent Strain Energy, and Its Specialization to von Kármán Plates and Beams,” J. Mech. Phys. Solids,
61(3), pp. 873–885.

[CrossRef]
Arbind,
A.
,
Reddy,
J. N.
, and
Srinivasa,
A. R.
, 2017, “
Nonlinear Analysis of Beams With Rotation Gradient Dependent Potential Energy for Constrained Micro-Rotation,” Eur. J. Mech. A,
65(4), pp. 178–194.

[CrossRef]
Yang,
F.
,
Chong,
A.
,
Lam,
D. C. C.
, and
Tong,
P.
, 2002, “
Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct.,
39(10), pp. 2731–2743.

[CrossRef]
Park,
S. K.
, and
Gao,
X.-L.
, 2008, “
Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem,” Z. Angew. Math. Phys.,
59(5), pp. 904–917.

[CrossRef]
Ma,
H. M.
,
Gao,
X.-L.
, and
Reddy,
J. N.
, 2008, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory,” J. Mech. Phys. Solids,
56(12), pp. 3379–3391.

[CrossRef]
Ma,
H. M.
,
Gao,
X.-L.
, and
Reddy,
J. N.
, 2011, “
A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory,” Acta Mech.,
220(1–4), pp. 217–235.

[CrossRef]
Romanoff,
J.
,
Reddy,
J. N.
, and
Jelovica,
J.
, 2016, “
Using Non-Local Timoshenko Beam Theories for Prediction of Micro- and Macro-Structural Responses,” Compos. Struct.,
156, pp. 410–420.

[CrossRef]
Reddy,
J. N.
, and
Srinivasa,
A. R.
, 2014, “
Non-Linear Theories of Beams and Plates Accounting for Moderate Rotations and Material Length Scales,” Int. J. Non-Linear Mech.,
66, pp. 43–53.

[CrossRef]
Shield,
R. T.
, 1973, “
The Rotation Associated With Large Strains,” SIAM J. Appl. Math.,
25(3), pp. 483–491.

[CrossRef]
Eringen,
A. C.
, 2002, Nonlocal Continuum Field Theories,
Springer Science & Business Media, New York.

Eringen,
A. C.
, 2012, Microcontinuum Field Theories—I: Foundations and Solids,
Springer Science & Business Media, New York.

Eringen,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves,” J. Appl. Phys.,
54(9), pp. 4703–4710.

[CrossRef]
Lazar,
M.
,
Maugin,
G. A.
, and
Aifantis,
E. C.
, 2006, “
On a Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications,” Int. J. Solids Struct.,
43(6), pp. 1404–1421.

[CrossRef]
Reddy,
J. N.
, 2007, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams,” Int. J. Eng. Sci.,
45(2), pp. 288–307.

[CrossRef]
Aifantis,
E. C.
, 2011, “
On the Gradient Approach–Relation to Eringen's Nonlocal Theory,” Int. J. Eng. Sci.,
49(12), pp. 1367–1377.

[CrossRef]
Silling,
S. A.
, 2000, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces,” J. Mech. Phys. Solids,
48(1), pp. 175–209.

[CrossRef]
Warren,
T. L.
,
Silling,
S. A.
,
Askari,
A.
,
Weckner,
O.
,
Epton,
M. A.
, and
Xu,
J.
, 2009, “
A Non-Ordinary State-Based Peridynamic Method to Model Solid Material Deformation and Fracture,” Int. J. Solids Struct.,
46(5), pp. 1186–1195.

[CrossRef]
Silling,
S. A.
, and
Lehoucq,
R. B.
, 2010, “
Peridynamic Theory of Solid Mechanics,” Adv. Appl. Mech.,
44, pp. 73–168.

Ha,
Y. D.
, and
Bobaru,
F.
, 2010, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics,” Int. J. Fract.,
162(1–2), pp. 229–244.

[CrossRef]
Foster,
J. T.
,
Silling,
S. A.
, and
Chen,
W. W.
, 2010, “
Viscoplasticity Using Peridynamics,” Int. J. Numer. Methods Eng.,
81(10), pp. 1242–1258.

Chen,
X.
, and
Gunzburger,
M.
, 2011, “
Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics,” Comput. Methods Appl. Mech. Eng.,
200(9), pp. 1237–1250.

[CrossRef]
Tupek,
M.
,
Rimoli,
J.
, and
Radovitzky,
R.
, 2013, “
An Approach for Incorporating Classical Continuum Damage Models in State-Based Peridynamics,” Comput. Methods Appl. Mech. Eng.,
263, pp. 20–26.

[CrossRef]
Chowdhury,
S. R.
,
Roy,
P.
,
Roy,
D.
, and
Reddy,
J. N.
, 2016, “
A Peridynamic Theory for Linear Elastic Shells,” Int. J. Solids Struct.,
84, pp. 110–132.

[CrossRef]
Hu,
W.
, 2012, “
Peridynamic Models for Dynamic Brittle Fracture,” Ph.D. dissertation, University of Nebraska, Lincoln, NE.

Amani,
J.
,
Oterkus,
E.
,
Areias,
P.
,
Zi,
G.
,
Nguyen-Thoi,
T.
, and
Rabczuk,
T.
, 2016, “
A Non-Ordinary State-Based Peridynamics Formulation for Thermoplastic Fracture,” Int. J. Impact Eng.,
87, pp. 83–94.

[CrossRef]
Sarkar, S.
,
Nowruzpour, M.
,
Reddy, J. N.
, and
Srinivasa, A. R.
, 2017, “
A Discrete Lagrangian Based Direct Approach to Macroscopic Modelling,” J. Mech. Phys. Solids,
98, pp. 172–180.

[CrossRef]
Littlewood,
D. J.
, 2010, “
Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact,” ASME Paper No. IMECE2010-40621.

Beris,
A. N.
, and
Edwards,
B. J.
, 1994, Thermodynamics of Flowing Systems: With Internal Microstructure, Vol.
36,
Oxford University Press, Oxford, UK.

Mindlin,
R. D.
, 1965, “
Stress Functions for a Cosserat Continuum,” Int. J. Solids Struct.,
1(3), pp. 265–271.

[CrossRef]
Maugin,
G. A.
, and
Metrikine,
A. V.
, 2010, “
Mechanics of Generalized Continua,” Advances in Mechanics and Mathematics, Vol.
21, Springer, Berlin.

Green,
A. E.
, and
Naghdi,
P. M.
, 1995, “
A Unified Procedure for Construction of Theories of Deformable Media—II: Generalized Continua,” Proc. R. Soc. London, Ser. A,
448(1934), pp. 357–377.

[CrossRef]
Green,
A. E.
,
Naghdi,
P. M.
, and
Rivlin,
R. S.
, 1965, “
Directors and Multipolar Displacements in Continuum Mechanics,” Int. J. Eng. Sci.,
2(6), pp. 611–620.

[CrossRef]
Antman,
S. S.
, 1973, “
The Theory of Rods,” Linear Theories of Elasticity and Thermoelasticity,
Springer, Berlin, pp. 641–703.

Naghdi,
P. M.
, 1973, “
The Theory of Shells and Plates,” Linear Theories of Elasticity and Thermoelasticity,
Springer, Berlin, pp. 425–640.

Pai,
D. K.
, 2002, “
Strands: Interactive Simulation of Thin Solids Using Cosserat Models,” Comput. Graphics Forum,
21(3), pp. 347–352.

[CrossRef]
Manning,
R. S.
,
Maddocks,
J. H.
, and
Kahn,
J. D.
, 1996, “
A Continuum Rod Model of Sequence-Dependent DNA Structure,” J. Chem. Phys.,
105(13), pp. 5626–5646.

[CrossRef]
Leslie,
F. M.
, 1971, “
Continuum Theory of Liquid Crystals,” Rheol. Acta,
10(1), pp. 91–95.

[CrossRef]
Lurie,
S.
,
Volkov-Bogorodsky,
D.
,
Zubov,
V.
, and
Tuchkova,
N.
, 2009, “
Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Applications for Filled Nanocomposites,” Comput. Mater. Sci.,
45(3), pp. 709–714.

[CrossRef]
Green,
A. E.
, and
Rivlin,
R. S.
, 1965, “
Multipolar Continuum Mechanics: Functional Theory—I,” Proc. R. Soc. London, Ser. A,
284(1398), pp. 303–324.

[CrossRef]
Green,
A. E.
,
McInnis,
B. C.
, and
Naghdi,
P. M.
, 1968, “
Elastic-Plastic Continua With Simple Force Dipole,” Int. J. Eng. Sci.,
6(7), pp. 373–394.

[CrossRef]
Green,
A. E.
, and
Naghdi,
P. M.
, 1965, “
Plasticity Theory and Multipolar Continuum Mechanics,” Mathematika,
12(01), pp. 21–26.

[CrossRef]
Batra,
R. C.
, 1987, “
The Initiation and Growth of, and the Interaction Among, Adiabatic Shear Bands in Simple and Dipolar Materials,” Int. J. Plast.,
3(1), pp. 75–89.

[CrossRef]
Eshelby,
J. D.
, 1956, “
The Continuum Theory of Lattice Defects,” Solid State Phys.,
3, pp. 79–144.

Eshelby,
J. D.
, 1999, “
Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics,” Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids,
Springer, New York, pp. 82–119.

Epstein,
M.
, and
Maugin,
G. A.
, 1990, “
The Energy-Momentum Tensor and Material Uniformity in Finite Elasticity,” Acta Mech.,
83(3–4), pp. 127–133.

[CrossRef]
Naghdi,
P. M.
, and
Srinivasa,
A. R.
, 1993, “
A Dynamical Theory of Structured Solids—I: Basic Developments,” Philos. Trans. R. Soc. London, Ser. A,
345(1677), pp. 425–458.

[CrossRef]
Gurtin,
M. E.
, 1999, “
The Nature of Configurational Forces,” Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids,
Springer, New York, pp. 281–314.

Gross,
D.
,
Kolling,
S.
,
Mueller,
R.
, and
Schmidt,
I.
, 2003, “
Configurational Forces and Their Application in Solid Mechanics,” Eur. J. Mech. A,
22(5), pp. 669–692.

[CrossRef]
Gurtin,
M. E.
, 2008, Configurational Forces as Basic Concepts of Continuum Physics, Vol.
137,
Springer Science & Business Media, New York.

Naghdi,
P. M.
, and
Srinivasa,
A. R.
, 1994, “
Characterization of Dislocations and Their Influence on Plastic Deformation in Single Crystals,” Int. J. Eng. Sci.,
32(7), pp. 1157–1182.

[CrossRef]
Rajagopal,
K. R.
, and
Srinivasa,
A. R.
, 2005, “
On the Role of the Eshelby Energy-Momentum Tensor in Materials With Multiple Natural Configurations,” Math. Mech. Solids,
10(1), pp. 3–24.

[CrossRef]
Baek,
S.
, and
Srinivasa,
A. R.
, 2003, “
A Variational Procedure Utilizing the Assumption of Maximum Dissipation Rate for Gradient-Dependent Elastic–Plastic Materials,” Int. J. Non-Linear Mech.,
38(5), pp. 659–662.

[CrossRef]
Ziegler,
H.
, 1968, “
A Possible Generalization of Onsager's Theory,” Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids,
Springer, New York, pp. 411–424.

Rajagopal,
K. R.
, and
Srinivasa,
A. R.
, 2004, “
On Thermomechanical Restrictions of Continua,” Proc. R. Soc. London, Ser. A,
460(2042), pp. 631–651.

[CrossRef]
Lee,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strains,” ASME J. Appl. Mech.,
36(1), pp. 1–6.

[CrossRef]
Eckart,
C.
, 1948, “
The Thermodynamics of Irreversible Processes—IV: The Theory of Elasticity and Anelasticity,” Phys. Rev.,
73(4), p. 373.

[CrossRef]
Rajagopal,
K. R.
, and
Srinivasa,
A. R.
, 1998, “
Mechanics of the Inelastic Behavior of Materials—Part 1: Theoretical Underpinnings,” Int. J. Plast.,
14(10), pp. 945–967.

[CrossRef]
Grassl,
P.
,
Xenos,
D.
,
Jirásek,
M.
, and
Horák,
M.
, 2014, “
Evaluation of Nonlocal Approaches for Modelling Fracture Near Nonconvex Boundaries,” Int. J. Solids Struct.,
51(18), pp. 3239–3251.

[CrossRef]
Provatas,
N.
, and
Elder,
K.
, 2011, Phase-Field Methods in Materials Science and Engineering,
Wiley,
New York.

Mitchell,
J. A.
, 2011, “
A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-3166.

Sun,
S.
, and
Sundararaghavan,
V.
, 2014, “
A Peridynamic Implementation of Crystal Plasticity,” Int. J. Solids Struct.,
51(19), pp. 3350–3360.

[CrossRef]
Reddy,
J. N.
, and
Srinivasa,
A. R.
, 2015, “
On the Force–Displacement Characteristics of Finite Elements for Elasticity and Related Problems,” Finite Elem. Anal. Des.,
104, pp. 35–40.

[CrossRef]
Kaufman,
A. N.
, 1984, “
Dissipative Hamiltonian Systems: A Unifying Principle,” Phys. Lett. A,
100(8), pp. 419–422.

[CrossRef]
Grmela,
M.
, and
Öttinger,
H. C.
, 1997, “
Dynamics and Thermodynamics of Complex Fluids—I: Development of a General Formalism,” Phys. Rev. E,
56(6), p. 6620.

[CrossRef]
Beris,
A. N.
, 2001, “
Bracket Formulation as a Source for the Development of Dynamic Equations in Continuum Mechanics,” J. Non-Newtonian Fluid Mech.,
96(1), pp. 119–136.

[CrossRef]
Clausius, R.
, and
Hirst, T. A.
, 2012, The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, Ulan Press, Paris, France.

Truesdell,
C.
, and
Muncaster,
R. G.
, 1980, “
Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics,” Research Supported by the National Science Foundation (Pure and Applied Mathematics, Vol.
83),
Academic Press,
New York, p. 1.

De Groot,
S. R.
, and
Mazur,
P.
, 2011, Non-Equilibrium Thermodynamics,
Dover, New York.

Onsager,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes—I,” Phys. Rev.,
37(4), p. 405.

[CrossRef]
Onsager,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes—II,” Phys. Rev.,
38(12), p. 2265.

[CrossRef]
Ziegler,
H.
, 1962, “
Some Extremum Principles in Irreversible Thermodynamics, With Application to Continuum Mechanics,” J. Appl. Math. Mech.,
45(4), p. 271.

Allen,
S. M.
, and
Cahn,
J. W.
, 1979, “
A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening,” Acta Metall.,
27(6), pp. 1085–1095.

[CrossRef]
Cahn,
J. W.
, 1961, “
On Spinodal Decomposition,” Acta Metall.,
9(9), pp. 795–801.

[CrossRef]
Rajagopal,
K. R.
, and
Srinivasa,
A. R.
, 2007, “
On the Response of Non-Dissipative Solids,” Proc. R. Soc. London, Ser. A,
463(2078), pp. 357–367.

[CrossRef]
Rajagopal,
K. R.
, and
Srinivasa,
A. R.
, 2009, “
On a Class of Non-Dissipative Materials That are Not Hyperelastic,” Proc. R. Soc. London, Ser. A,
465(2102), pp. 493–500.

[CrossRef]