Russo,
L.
, 2004, “
The Forgotten Revolution. How Science Was Born in 300 BC and Why it Had to be Reinvented,” Übersetzung aus dem Italienischen von Silvio Levy,
Springer,
Berlin.

Germain,
P.
, 1973, “
The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure,” SIAM J. Appl. Math.,
25(3), pp. 556–575.

[CrossRef]
Maugin,
G.
, and
Trimarco,
C.
, 1992, “
Pseudomomentum and Material Forces in Nonlinear Elasticity: Variational Formulations and Application to Brittle Fracture,” Acta Mech.,
94(1–2), pp. 1–28.

[CrossRef]
Maugin,
G. A.
, and
Trimarco,
C.
, 1992, “
Note on a Mixed Variational Principle in Finite Elasticity,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl.,
3(1), pp. 69–74.

Arnold,
V. I.
, 1989, Mathematical Methods of Classical Mechanics, Vol.
60,
Springer Science & Business Media,
New York.

Maugin,
G.
, 1980, “
The Method of Virtual Power in Continuum Mechanics: Application to Coupled Fields,” Acta Mech.,
35(1–2), pp. 1–70.

[CrossRef]
Toupin,
R. A.
, 1965, “
Saint-Venant's Principle,” Arch. Ration. Mech. Anal.,
18(2), pp. 83–96.

[CrossRef]
Mühlhaus,
H.-B.
, and
Alfantis,
E.
, 1991, “
A Variational Principle for Gradient Plasticity,” Int. J. Solids Struct.,
28(7), pp. 845–857.

[CrossRef]
Edelen,
D. G.
, 1969, “
Non-Local Variational Mechanics Variational Imbedding, Adjoint Theorems and Existence,” Int. J. Eng. Sci.,
7(4), pp. 401–415.

[CrossRef]
dell'Isola,
F.
, and
Placidi,
L.
, 2012, “
Variational Principles are a Powerful Tool Also for Formulating Field Theories,” Variational Models and Methods in Solid and Fluid Mechanics,
Springer Science & Business Media,
Vienna, Austria.

Kirchner,
N.
, and
Steinmann,
P.
, 2005, “
A Unifying Treatise on Variational Principles for Gradient and Micromorphic Continua,” Philos. Mag.,
85(33–35), pp. 3875–3895.

[CrossRef]
Placidi,
L.
, “
A Variational Approach for a Nonlinear One-Dimensional Damage-Elasto-Plastic Second-Gradient Continuum Model,” Continuum Mech. Thermodyn., epub.

Placidi,
L.
, “
A Variational Approach for a Nonlinear 1-Dimensional Second Gradient Continuum Damage Model,” Continuum Mech. Thermodyn.,
27(4–5), pp. 623–638.

Rahouadj,
R.
,
Ganghoffer,
J.-F.
, and
Cunat,
C.
, 2003, “
A Thermodynamic Approach With Internal Variables Using Lagrange Formalism. Part I: General Framework,” Mech. Res. Commun.,
30(2), pp. 109–117.

[CrossRef]
Eremeyev,
V. A.
, and
Pietraszkiewicz,
W.
, 2004, “
The Nonlinear Theory of Elastic Shells With Phase Transitions,” J. Elasticity,
74(1), pp. 67–86.

[CrossRef]
Rahouadj,
R.
,
Ganghoffer,
J.-F.
, and
Cunat,
C.
, 2003, “
A Thermodynamic Approach With Internal Variables Using Lagrange Formalism. Part II. Continuous Symmetries in the Case of the Time–Temperature Equivalence,” Mech. Res. Commun.,
30(2), pp. 119–123.

[CrossRef]
Ganghoffer,
J.
, 2012, “
Extremum Principles for Biological Continuous Bodies Undergoing Volumetric and Surface Growth,” Bull. Pol. Acad. Sci.,
60(2), pp. 259–263.

Serrano,
H.
, 2014, “
A Variational Approach to the Homogenization of Laminate Metamaterials,” Nonlinear Anal.,
18, pp. 75–85.

[CrossRef]
Deü,
J. F.
,
Larbi,
W.
, and
Ohayon,
R.
, 2008, “
Piezoelectric Structural Acoustic Problems: Symmetric Variational Formulations and Finite Element Results,” *Comp. Meth. Appl. Mech. Eng.*,
197(19), pp. 1715–1724.

Altenbach,
H.
,
Eremeyev,
V. A.
, and
Lebedev,
L. P.
, 2010, “
On the Existence of Solution in the Linear Elasticity With Surface Stresses,” J. Appl. Math. Mech./Z. Angew. Math. Mech.,
90(3), pp. 231–240.

Altenbach,
H.
,
Eremeyev,
V. A.
, and
Lebedev,
L. P.
, 2011, “
On the Spectrum and Stiffness of an Elastic Body With Surface Stresses,” J. Appl. Math. Mech./Z. Angew. Math. Mech.,
91(9), pp. 699–710.

Eremeyev,
V. A.
, and
Lebedev,
L. P.
, 2015, “
Mathematical Study of Boundary-Value Problems Within the Framework of Steigmann–Ogden Model of Surface Elasticity,” Continuum Mech. Thermodyn., epub.

Eremeyev,
V. A.
, and
Lebedev,
L. P.
, 2011, “
Existence Theorems in the Linear Theory of Micropolar Shells,” J. Appl. Math. Mech./Z. Angew. Math. Mech.,
91(6), pp. 468–476.

Eremeyev,
V. A.
, and
Lebedev,
L. P.
, 2013, “
Existence of Weak Solutions in Elasticity,” Math. Mech. Solids,
18(2), pp. 204–217.

[CrossRef]
Ortiz,
M.
, and
Stainier,
L.
, 1999, “
The Variational Formulation of Viscoplastic Constitutive Updates,” Comput. Methods Appl. Mech. Eng.,
171(3), pp. 419–444.

[CrossRef]
Liu,
C.
,
Li,
F.
,
Ma,
L.-P.
, and
Cheng,
H.-M.
, 2010, “
Advanced Materials for Energy Storage,” Adv. Mater.,
22(8), pp. E28–E62.

[CrossRef] [PubMed]
Caruso,
F.
, 2001, “
Nanoengineering of Particle Surfaces,” Adv. Mater.,
13(1), pp. 11–22.

[CrossRef]
Coleman,
J. N.
,
Khan,
U.
, and
Gun'ko,
Y. K.
, 2006, “
Mechanical Reinforcement of Polymers Using Carbon Nanotubes,” Adv. Mater.,
18(6), pp. 689–706.

[CrossRef]
Hammond,
P. T.
, 2004, “
Form and Function in Multilayer Assembly: New Applications at the Nanoscale,” Adv. Mater.,
16(15), pp. 1271–1293.

[CrossRef]
Fleck,
N.
,
Deshpande,
V.
, and
Ashby,
M.
, 2010, “
Micro-Architectured Materials: Past, Present and Future,” Proc. R. Soc. London A,
466(2121), pp. 2495–2516.

[CrossRef]
Dunlop,
J. W.
, and
Fratzl,
P.
, 2013, “
Multilevel Architectures in Natural Materials,” Scr. Mater.,
68(1), pp. 8–12.

[CrossRef]
Brechet,
Y.
, and
Embury,
J.
, 2013, “
Architectured Materials: Expanding Materials Space,” Scr. Mater.,
68(1), pp. 1–3.

[CrossRef]
Bouaziz,
O.
,
Brechet,
Y.
, and
Embury,
J.
, 2008, “
Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials,” Adv. Eng. Mater.,
10(1–2), pp. 24–36.

[CrossRef]
Bollen,
P.
,
Quiévy,
N.
,
Huynen,
I.
,
Bailly,
C.
,
Detrembleur,
C.
,
Thomassin,
J.-M.
, and
Pardoen,
T.
, 2013, “
Multifunctional Architectured Materials for Electromagnetic Absorption,” Scr. Mater.,
68(1), pp. 50–54.

[CrossRef]
Ashby,
M.
, 2013, “
Designing Architectured Materials,” Scr. Mater.,
68(1), pp. 4–7.

[CrossRef]
Ashby,
M.
, and
Brechet,
Y.
, 2003, “
Designing Hybrid Materials,” Acta Mater.,
51(19), pp. 5801–5821.

[CrossRef]
Griesshaber,
E.
,
Schmahl,
W. W.
,
Neuser,
R.
,
Pettke,
T.
,
Blüm,
M.
,
Mutterlose,
J.
, and
Brand,
U.
, 2007, “
Crystallographic Texture and Microstructure of Terebratulide Brachiopod Shell Calcite: An Optimized Materials Design With Hierarchical Architecture,” Am. Mineral.,
92(5–6), pp. 722–734.

[CrossRef]
Bruchhaus,
R.
,
Honal,
M.
,
Symanczyk,
R.
, and
Kund,
M.
, 2009, “
Selection of Optimized Materials for CBRAM Based on HT-XRD and Electrical Test Results,” J. Electrochem. Soc.,
156(9), pp. H729–H733.

[CrossRef]
Vetterl,
O.
,
Finger,
F.
,
Carius,
R.
,
Hapke,
P.
,
Houben,
L.
,
Kluth,
O.
,
Lambertz,
A.
,
Mück,
A.
,
Rech,
B.
, and
Wagner,
H.
, 2000, “
Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics,” Sol. Energy Mater. Sol. Cells,
62(1), pp. 97–108.

[CrossRef]
Zheludev,
N. I.
, 2010, “
The Road Ahead for Metamaterials,” Science,
328(5978), pp. 582–583.

[CrossRef] [PubMed]
Ju,
J.
,
Summers,
J. D.
,
Ziegert,
J.
, and
Fadel,
G.
, 2009, “
Design of Honeycomb Meta-Materials for High Shear Flexure,” ASME Paper No. DETC2009-87730.

Engheta,
N.
, and
Ziolkowski,
R. W.
, 2006, Metamaterials: Physics and Engineering Explorations,
Wiley,
Hoboken, NJ.

Del Vescovo,
D.
, and
Giorgio,
I.
, 2014, “
Dynamic Problems for Metamaterials: Review of Existing Models and Ideas for Further Research,” Int. J. Eng. Sci.,
80(SI), pp. 153–172.

[CrossRef]
Milton,
G.
, and
Seppecher,
P.
, 2012, “
A Metamaterial Having a Frequency Dependent Elasticity Tensor and a Zero Effective Mass Density,” Phys. Status Solidi (B),
249(7), pp. 1412–1414.

[CrossRef]
Kang,
I.
,
Heung,
Y. Y.
,
Kim,
J. H.
,
Lee,
J. W.
,
Gollapudi,
R.
,
Subramaniam,
S.
,
Narasimhadevara,
S.
,
Hurd,
D.
,
Kirikera,
G. R.
,
Shanov,
V.
,
Schulz,
M. J.
,
Shi,
D.
,
Boerio,
J.
,
Mall,
S.
, and
Ruggles-Wren,
M.
, 2006, “
Introduction to Carbon Nanotube and Nanofiber Smart Materials,” Composites, Part B,
37(6), pp. 382–394.

[CrossRef]
Wang,
Z. L.
, 1998, Functional and Smart Materials,
Wiley Online Library,
Hoboken, NJ.

Giurgiutiu,
V.
, 2000, “
Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control,” J. Intell. Mater. Syst. Struct.,
11(7), pp. 525–544.

[CrossRef]
Song,
Y.
,
Wei,
W.
, and
Qu,
X.
, 2011, “
Colorimetric Biosensing Using Smart Materials,” Adv. Mater.,
23(37), pp. 4215–4236.

[CrossRef] [PubMed]
Chopra,
I.
, 2002, “
Review of State of Art of Smart Structures and Integrated Systems,” AIAA J.,
40(11), pp. 2145–2187.

[CrossRef]
Vernerey,
F.
,
Liu,
W. K.
, and
Moran,
B.
, 2007, “
Multi-Scale Micromorphic Theory for Hierarchical Materials,” J. Mech. Phys. Solids,
55(12), pp. 2603–2651.

[CrossRef]
Nicot,
F.
,
Darve,
F.
, and
Group,
R.
, 2005, “
A Multi-Scale Approach to Granular Materials,” Mech. Mater.,
37(9), pp. 980–1006.

Bentz,
D.
, 2000, “
Influence of Silica Fume on Diffusivity in Cement-Based Materials: II. Multi-Scale Modeling of Concrete Diffusivity,” Cem. Concr. Res.,
30(7), pp. 1121–1129.

[CrossRef]
Fast,
T.
,
Niezgoda,
S. R.
, and
Kalidindi,
S. R.
, 2011, “
A New Framework for Computationally Efficient Structure–Structure Evolution Linkages to Facilitate High-Fidelity Scale Bridging in Multi-Scale Materials Models,” Acta Mater.,
59(2), pp. 699–707.

[CrossRef]
Hao,
S.
,
Moran,
B.
,
Liu,
W. K.
, and
Olson,
G. B.
, 2003, “
A Hierarchical Multi-Physics Model for Design of High Toughness Steels,” J. Comput. Aided Mater. Des.,
10(2), pp. 99–142.

[CrossRef]
de Borst,
R.
, 2008, “
Challenges in Computational Materials Science: Multiple Scales, Multi-Physics and Evolving Discontinuities,” Comput. Mater. Sci.,
43(1), pp. 1–15.

[CrossRef]
Hamilton,
R.
,
MacKenzie,
D.
, and
Li,
H.
, 2010, “
Multi-Physics Simulation of Friction Stir Welding Process,” Eng. Comput.,
27(8), pp. 967–985.

[CrossRef]
Eremeyev,
V.
, and
Pietraszkiewicz,
W.
, 2009, “
Phase Transitions in Thermoelastic and Thermoviscoelastic Shells,” Arch. Mech.,
61(1), pp. 41–67.

Eremeyev,
V.
, and
Pietraszkiewicz,
W.
, 2011, “
Thermomechanics of Shells Undergoing Phase Transition,” J. Mech. Phys. Solids,
59(7), pp. 1395–1412.

[CrossRef]
Pietraszkiewicz,
W.
,
Eremeyev,
V.
, and
Konopińska,
V.
, 2007, “
Extended Non-Linear Relations of Elastic Shells Undergoing Phase Transitions,” Z. Angew. Math. Mech.,
87(2), pp. 150–159.

[CrossRef]
Piccardo,
G.
, and
Solari,
G.
, 2000, “
3D Wind-Excited Response of Slender Structures: Closed-Form Solution,” J. Struct. Eng.,
126(8), pp. 936–943.

[CrossRef]
Piccardo,
G.
, 1993, “
A Methodology for the Study of Coupled Aeroelastic Phenomena,” J. Wind Eng. Ind. Aerodyn.,
48(2), pp. 241–252.

[CrossRef]
de Villoria,
R. G.
,
Yamamoto,
N.
,
Miravete,
A.
, and
Wardle,
B. L.
, 2011, “
Multi-Physics Damage Sensing in Nano-Engineered Structural Composites,” Nanotechnology,
22(18), p. 185502.

[CrossRef] [PubMed]
Alessandroni,
S.
,
Andreaus,
U.
,
dell'Isola,
F.
, and
Porfiri,
M.
, 2004, “
Piezo-Electromechanical (PEM) Kirchhoff–Love Plates,” Eur. J. Mech. A,
23(4), pp. 689–702.

[CrossRef]
Placidi,
L.
, and
Hutter,
K.
, 2006, “
Thermodynamics of Polycrystalline Materials Treated by the Theory of Mixtures With Continuous Diversity,” Continuum Mech. Thermodyn.,
17(6), pp. 409–451.

[CrossRef]
Andreaus,
U.
, and
Porfiri,
M.
, 2007, “
Effect of Electrical Uncertainties on Resonant Piezoelectric Shunting,” J. Intell. Mater. Syst. Struct.,
18(5), pp. 477–485.

[CrossRef]
Kim,
D.-H.
,
Song,
J.
,
Choi,
W. M.
,
Kim,
H.-S.
,
Kim,
R.-H.
,
Liu,
Z.
,
Huang,
Y. Y.
,
Hwang,
K.-C.
,
Zhang,
Y.-w.
, and
Rogers,
J. A.
, 2008, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations,” Proc. Natl. Acad. Sci.,
105(48), pp. 18675–18680.

[CrossRef]
Mannsfeld,
S. C.
,
Tee,
B. C.
,
Stoltenberg,
R. M.
,
Chen,
C. V. H.
,
Barman,
S.
,
Muir,
B. V.
,
Sokolov,
A. N.
,
Reese,
C.
, and
Bao,
Z.
, 2010, “
Highly Sensitive Flexible Pressure Sensors With Microstructured Rubber Dielectric Layers,” Nat. Mater.,
9(10), pp. 859–864.

[CrossRef] [PubMed]
Maurini,
C.
,
Pouget,
J.
, and
dell'Isola,
F.
, 2004, “
On a Model of Layered Piezoelectric Beams Including Transverse Stress Effect,” Int. J. Solids Struct.,
41(16), pp. 4473–4502.

[CrossRef]
Lakes,
R.
, 1993, “
Advances in Negative Poisson's Ratio Materials,” Adv. Mater.,
5(4), pp. 293–296.

[CrossRef]
Lakes,
R.
, and
Drugan,
W.
, 2002, “
Dramatically Stiffer Elastic Composite Materials Due to a Negative Stiffness Phase?” J. Mech. Phys. Solids,
50(5), pp. 979–1009.

[CrossRef]
Jaglinski,
T.
,
Kochmann,
D.
,
Stone,
D.
, and
Lakes,
R.
, 2007, “
Composite Materials With Viscoelastic Stiffness Greater Than Diamond,” Science,
315(5812), pp. 620–622.

[CrossRef] [PubMed]
Bertoldi,
K.
,
Reis,
P. M.
,
Willshaw,
S.
, and
Mullin,
T.
, 2010, “
Negative Poisson's Ratio Behavior Induced by an Elastic Instability,” Adv. Mat.,
22(3), pp. 361–366.

Kashdan,
L.
,
Conner Seepersad,
C.
,
Haberman,
M.
, and
Wilson,
P. S.
, 2012, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using SLS,” Rapid Prototyping J.,
18(3), pp. 194–200.

[CrossRef]
Milton,
G. W.
, 2002, “
The Theory of Composites,” Cambridge Monographs on Applied and Computational Mathematics,
Cambridge University Press,
Cambridge, UK.

Nikopour,
H.
, and
Selvadurai,
A.
, 2013, “
Torsion of a Layered Composite Strip,” Compos. Struct.,
95, pp. 1–4.

[CrossRef]
Nikopour,
H.
, and
Selvadurai,
A.
, 2014, “
Concentrated Loading of a Fibre-Reinforced Composite Plate: Experimental and Computational Modeling of Boundary Fixity,” Composites, Part B,
60, pp. 297–305.

[CrossRef]
Placidi,
L.
, and
Hutter,
K.
, 2005, “
An Anisotropic Flow Law for Incompressible Polycrystalline Materials,” Z. Angew. Math. Phys.,
57(1), pp. 160–181.

[CrossRef]
Selvadurai,
A.
, and
Nikopour,
H.
, 2012, “
Transverse Elasticity of a Unidirectionally Reinforced Composite With an Irregular Fibre Arrangement: Experiments, Theory and Computations,” Compos. Struct.,
94(6), pp. 1973–1981.

[CrossRef]
Arnold,
C. B.
,
Serra,
P.
, and
Piqué,
A.
, 2007, “
Laser Direct-Write Techniques for Printing of Complex Materials,” MRS Bull.,
32(1), pp. 23–31.

[CrossRef]
Pershin,
Y. V.
, and
Di Ventra,
M.
, 2011, “
Memory Effects in Complex Materials and Nanoscale Systems,” Adv. Phys.,
60(2), pp. 145–227.

[CrossRef]
Proffen,
T.
,
Billinge,
S.
,
Egami,
T.
, and
Louca,
D.
, 2003, “
Structural Analysis of Complex Materials Using the Atomic Pair Distribution Function—A Practical Guide,” Z. Kristallogr./Int. J. Struct. Phys. Chem. Aspects Cryst. Mater.,
218(2), pp. 132–143.

Grillo,
A.
,
Federico,
S.
, and
Wittum,
G.
, 2012, “
Growth, Mass Transfer, and Remodeling in Fiber-Reinforced, Multi-Constituent Materials,” Int. J. Nonlinear Mech.,
47(2), pp. 388–401.

[CrossRef]
Grillo,
A.
,
Federico,
S.
,
Wittum,
G.
,
Imatani,
S.
,
Giaquinta,
G.
, and
Mićunović,
M. V.
, 2009, “
Evolution of a Fibre-Reinforced Growing Mixture,” Nuovo Cimento C,
32C(1), pp. 97–119.

Grillo,
A.
, and
Wittum,
G.
, 2010, “
Growth and Mass Transfer in Multi-Constituent Biological Materials,” AIP Conf. Proc.,
1281(1), pp. 355–358.

Seddik,
H.
,
Greve,
R.
,
Zwinger,
T.
, and
Placidi,
L.
, 2011, “
A Full Stokes Ice Flow Model for the Vicinity of Dome Fuji, Antarctica, With Induced Anisotropy and Fabric Evolution,” Cryosphere,
5(2), pp. 495–508.

[CrossRef]
Porubov,
A. V.
,
Aero,
E. L.
, and
Andrievsky,
B.
, 2010, “
Dynamic Properties of Essentially Nonlinear Generalized Continua,” Mechanics of Generalized Continua,
Springer,
New York, pp. 161–168.

Forest,
S.
, 1998, “
Mechanics of Generalized Continua: Construction by Homogenization,” J. Phys. IV,
8(PR4), pp. PR4–PR39.

Maugin,
G. A.
, and
Metrikine,
A. V.
, 2010, “
Mechanics of Generalized Continua,” Advances in Mechanics and Mathematics, Vol.
21,
Springer,
New York.

Tekoğlu,
C.
, and
Onck,
P. R.
, 2008, “
Size Effects in Two-Dimensional Voronoi Foams: A Comparison Between Generalized Continua and Discrete Models,” J. Mech. Phys. Solids,
56(12), pp. 3541–3564.

[CrossRef]
Forest,
S.
, and
Trinh,
D. K.
, 2011, “
Generalized Continua and Non-Homogeneous Boundary Conditions in Homogenisation Methods,” ZAMM,
91(2), pp. 90–109.

[CrossRef]
Boutin,
C.
,
Hans,
S.
, and
Chesnais,
C.
, 2010, “
Generalized Beams and Continua. Dynamics of Reticulated Structures,” Mechanics of Generalized Continua,
Springer,
New York, pp. 131–141.

Feyel,
F.
, 2003, “
A Multilevel Finite Element Method (FE 2) to Describe the Response of Highly Non-Linear Structures Using Generalized Continua,” Comput. Methods Appl. Mech. Eng.,
192(28), pp. 3233–3244.

[CrossRef]
Forest, S.
, and
Sievert,
R.
, 2003, “
Elastoviscoplastic Constitutive Frameworks for Generalized Continua,” Acta Mechanica
160(1–2), pp. 71–111.

[CrossRef]
Green,
A.
, and
Naghdi,
P.
, 1995, “
A Unified Procedure for Construction of Theories of Deformable Media. II. Generalized Continua,” Proc. R. Soc. London A,
448(1934), pp. 357–377.

[CrossRef]
Eringen,
A. C.
, 1965, “
Theory of Micropolar Fluids,” DTIC Document, Technical Report No. 27.

Eringen,
A. C.
, and
Suhubi,
E.
, 1964, “
Nonlinear Theory of Simple Micro-Elastic Solidsi,” Int. J. Eng. Sci.,
2(2), pp. 189–203.

[CrossRef]
Eringen,
A. C.
, 1999, “
Theory of Micropolar Elasticity,” Microcontinuum Field Theories,
Springer,
New York, pp. 101–248.

Mindlin,
R. D.
, 1964, “
Micro-Structure in Linear Elasticity,” Arch. Ration. Mech. Anal.,
16(1), pp. 51–78.

[CrossRef]
Eringen,
A. C.
, 2012, Microcontinuum Field Theories: I. Foundations and Solids.
Springer Science & Business Media,
New York.

Neff,
P.
,
Ghiba,
I.-D.
,
Madeo,
A.
,
Placidi,
L.
, and
Rosi,
G.
, 2013, “
A Unifying Perspective: The Relaxed Linear Micromorphic Continuum,” Continuum Mech. Thermodyn.,
26(5), pp. 639–681.

[CrossRef]
Neff,
P.
, 2004, “
On Material Constants for Micromorphic Continua,” Trends in Applications of Mathematics to Mechanics, XIVth International Symposium on Trends in Applications of Mathematics to Mechanics (STAMM'2004), Seeheim, Germany, Aug. 22–28, pp. 337–348.

Misra,
A.
, and
Singh,
V.
, 2013, “
Micromechanical Model for Viscoelastic-Materials Undergoing Damage,” Continuum Mech. Thermodyn.,
25(2), pp. 1–16.

Misra,
A.
, and
Yang,
Y.
, 2010, “
Micromechanical Model for Cohesive Materials Based Upon Pseudo-Granular Structure,” Int. J. Solids Struct.,
47(21), pp. 2970–2981.

[CrossRef]
Contrafatto,
L.
,
Cuomo,
M.
, and
Fazio,
F.
, 2012, “
An Enriched Finite Element for Crack Opening and Rebar Slip in Reinforced Concrete Members,” Int. J. Fract.,
178(1–2), pp. 33–50.

[CrossRef]
Scerrato,
D.
,
Giorgio,
I.
,
Della Corte,
A.
,
Madeo,
A.
, and
Limam,
A.
, 2015, “
A Micro-Structural Model for Dissipation Phenomena in the Concrete,” Int. J. Numer. Anal. Methods Geomech.,
39(18), pp. 2037–2052.

[CrossRef]
Scerrato,
D.
,
Giorgio,
I.
,
Madeo,
A.
,
Limam,
A.
, and
Darve,
F.
, 2014, “
A Simple Non-Linear Model for Internal Friction in Modified Concrete,” Int. J. Eng. Sci.,
80(SI), pp. 136–152.

[CrossRef]
Boutin,
C.
, 1996, “
Microstructural Effects in Elastic Composites,” Int. J. Solids Struct.,
33(7), pp. 1023–1051.

[CrossRef]
Eringen,
A. C.
, 1968, Mechanics of Micromorphic Continua,
Springer,
Berlin.

Bréchet,
Y.
, 2000, Microstructures, Mechanical Properties and Processes,
Wiley-VCH,
Weinheim, Germany.

Leismann,
T.
, and
Mahnken,
R.
, 2015, “
Comparison of Micromorphic, Micropolar and Microstrain Continua,” Book of Abstracts–Extract, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), Lecce, Italy, Mar. 23–27, Università del Salento, Lecce, Italy, p. 58.

Kim,
D.
,
Brunski,
J.
, and
Nicolella,
D.
, 2005, “
Microstrain Fields for Cortical Bone in Uniaxial Tension: Optical Analysis Method,” Proc. Inst. Mech. Eng., Part H,
219(2), pp. 119–128.

[CrossRef]
Yang,
Y.
, and
Misra,
A.
, 2012, “
Micromechanics Based Second Gradient Continuum Theory for Shear Band Modeling in Cohesive Granular Materials Following Damage Elasticity,” Int. J. Solids Struct.,
49(18), pp. 2500–2514.

[CrossRef]
Yang,
Y.
,
Ching,
W.
, and
Misra,
A.
, 2011, “
Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film,” J. Nanomech. Micromech.,
1(2), pp. 60–71.

[CrossRef]
Seppecher,
P.
, 2002, “
Second-Gradient Theory: Application to Cahn–Hilliard Fluids,” Continuum Thermomechanics,
Springer,
New York, pp. 379–388.

Alibert,
J.-J.
,
Seppecher,
P.
, and
dell'Isola,
F.
, 2003, “
Truss Modular Beams With Deformation Energy Depending on Higher Displacement Gradients,” Math. Mech. Solids,
8(1), pp. 51–73.

[CrossRef]
Neff,
P.
,
Chełmiński,
K.
, and
Alber,
H.-D.
, 2009, “
Notes on Strain Gradient Plasticity: Finite Strain Covariant Modelling and Global Existence in the Infinitesimal Rate-Independent Case,” Math. Models Methods Appl. Sci.,
19(2), pp. 307–346.

[CrossRef]
Placidi,
L.
,
Rosi,
G.
,
Giorgio,
I.
, and
Madeo,
A.
, 2014, “
Reflection and Transmission of Plane Waves at Surfaces Carrying Material Properties and Embedded in Second-Gradient Materials,” Math. Mech. Solids,
19(5), pp. 555–578.

[CrossRef]
Askes,
H.
,
Suiker,
A.
, and
Sluys,
L.
, 2002, “
A Classification of Higher-Order Strain-Gradient Models—Linear Analysis,” Arch. Appl. Mech.,
72(2–3), pp. 171–188.

[CrossRef]
Rinaldi,
A.
, and
Placidi,
L.
, 2013, “
A Microscale Second Gradient Approximation of the Damage Parameter of Quasi-Brittle Heterogeneous Lattices,” Z. Angew. Math. Mech./J. Appl. Math. Mech.,
94(10), pp. 862–877.

[CrossRef]
Iordache,
M.-M.
, and
Willam,
K.
, 1998, “
Localized Failure Analysis in Elastoplastic Cosserat Continua,” Comput. Methods Appl. Mech. Eng.,
151(3), pp. 559–586.

[CrossRef]
Perić,
D.
,
Yu,
J.
, and
Owen,
D.
, 1994, “
On Error Estimates and Adaptivity in Elastoplastic Solids: Applications to the Numerical Simulation of Strain Localization in Classical and Cosserat Continua,” Int. J. Numer. Methods Eng.,
37(8), pp. 1351–1379.

[CrossRef]
Ehlers,
W.
,
Ramm,
E.
,
Diebels,
S.
, and
dAddetta,
G.
, 2003, “
From Particle Ensembles to Cosserat Continua: Homogenization of Contact Forces Towards Stresses and Couple Stresses,” Int. J. Solids Struct.,
40(24), pp. 6681–6702.

[CrossRef]
Neuber,
H.
, 1966, “
On the General Solution of Linear-Elastic Problems in Isotropic and Anisotropic Cosserat Continua,” Applied Mechanics,
Springer,
Berlin, pp. 153–158.

Dietsche,
A.
, and
Willam,
K.
, 1997, “
Boundary Effects in Elasto-Plastic Cosserat Continua,” Int. J. Solids Struct.,
34(7), pp. 877–893.

[CrossRef]
Ieşan,
D.
, 2007, “
A Theory of Thermoviscoelastic Composites Modelled as Interacting Cosserat Continua,” J. Therm. Stresses,
30(12), pp. 1269–1289.

[CrossRef]
Pietraszkiewicz,
W.
, and
Eremeyev,
V.
, 2009, “
On Vectorially Parameterized Natural Strain Measures of the Non-Linear Cosserat Continuum,” Int. J. Solids Struct.,
46(11), pp. 2477–2480.

[CrossRef]
Altenbach,
J.
,
Altenbach,
H.
, and
Eremeyev,
V. A.
, 2010, “
On Generalized Cosserat-Type Theories of Plates and Shells: A Short Review and Bibliography,” Arch. Appl. Mech.,
80(1), pp. 73–92.

[CrossRef]
Steinmann,
P.
, and
Stein,
E.
, 1997, “
A Unifying Treatise of Variational Principles for Two Types of Micropolar Continua,” Acta Mech.,
121(1–4), pp. 215–232.

[CrossRef]
Eremeyev,
V. A.
, and
Pietraszkiewicz,
W.
, “
Material Symmetry Group and Constitutive Equations of Micropolar Anisotropic Elastic Solids,” Math. Mech. Solids, epub.

Eremeyev,
V. A.
, and
Pietraszkiewicz,
W.
, 2012, “
Material Symmetry Group of the Non-Linear Polar-Elastic Continuum,” Int. J. Solids Struct.,
49(14), pp. 1993–2005.

[CrossRef]
Pietraszkiewicz,
W.
, and
Eremeyev,
V.
, 2009, “
On Natural Strain Measures of the Non-Linear Micropolar Continuum,” Int. J. Solids Struct.,
46(3), pp. 774–787.

[CrossRef]
Jänicke,
R.
,
Diebels,
S.
,
Sehlhorst,
H.-G.
, and
Düster,
A.
, 2009, “
Two-Scale Modelling of Micromorphic Continua,” Continuum Mech. Thermodyn.,
21(4), pp. 297–315.

[CrossRef]
Forest,
S.
, and
Sievert,
R.
, 2006, “
Nonlinear Microstrain Theories,” Int. J. Solids Struct.,
43(24), pp. 7224–7245.

[CrossRef]
dell'Isola,
F.
,
Andreaus,
U.
, and
Placidi,
L.
, 2014, “
At the Origins and in the Vanguard of Peridynamics, Non-Local and Higher-Gradient Continuum Mechanics: An Underestimated and Still Topical Contribution of Gabrio Piola,” Math. Mech. Solids,
20(8), pp. 887–928.

[CrossRef]
Carcaterra,
A.
,
dell'Isola,
F.
,
Esposito,
R.
, and
Pulvirenti,
M.
, 2015, “
Macroscopic Description of Microscopically Strongly Inhomogeneous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials,” Arch. Ration. Mech. Anal.,
218(3), pp. 1239–1262.

[CrossRef]
Alibert,
J. J.
, and
Corte,
A. D.
, 2015, “
Second-Gradient Continua as Homogenized Limit of Pantographic Microstructured Plates: A Rigorous Proof,” Z. Angew. Math. Phys.,
66(5), pp. 2855–2870.

[CrossRef]
Giorgio,
I.
,
Galantucci,
L.
,
Della Corte,
A.
, and
Del Vescovo,
D.
, 2015, “
Piezo-Electromechanical Smart Materials With Distributed Arrays of Piezoelectric Transducers: Current and Upcoming Applications,” Int. J. Appl. Electromagn. Mech.,
47(4), pp. 1051–1084.

[CrossRef]
Trinh,
D. K.
,
Janicke,
R.
,
Auffray,
N.
,
Diebels,
S.
, and
Forest,
S.
, 2012, “
Evaluation of Generalized Continuum Substitution Models for Heterogeneous Materials,” Int. J. Multiscale Comput. Eng.,
10(6), pp. 527–549.

[CrossRef]
Ashby,
M. F.
, and
Cebon,
D.
, 1993, “
Materials Selection in Mechanical Design,” J. Phys. IV,
3(C7), pp. C7-1–C7-9.

Elanchezhian,
C.
, and
Sundar,
G. S.
, 2007, Computer Aided Manufacturing,
Firewall Media,
New Delhi, India.

Auffray,
N.
,
dellIsola,
F.
,
Eremeyev,
V.
,
Madeo,
A.
, and
Rosi,
G.
, 2015, “
Analytical Continuum Mechanics à la Hamilton–Piola Least Action Principle for Second Gradient Continua and Capillary Fluids,” Math. Mech. Solids,
20(4), pp. 375–417.

[CrossRef]
Milton,
G. W.
, and
Willis,
J. R.
, 2007, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics,” Proc. R. Soc. London A,
463(2079), pp. 855–880.

[CrossRef]
Metropolis,
N.
, 1987, “
The Beginning of the Monte Carlo Method,” Los Alamos Sci.,
Special Issue, pp. 125–130.

Happ,
H. H.
, and
Kron,
G.
, 1973, Gabriel Kron and Systems Theory,
Union College Press,
Schenectady, NY.

Zienkiewicz,
O. C.
,
Taylor,
R. L.
,
Zienkiewicz,
O. C.
, and
Taylor,
R. L.
, 1977, The Finite Element Method, Vol.
3,
McGraw-Hill,
London, UK.

Greco,
L.
,
Impollonia,
N.
, and
Cuomo,
M.
, 2014, “
A Procedure for the Static Analysis of Cable Structures Following Elastic Catenary Theory,” Int. J. Solids Struct.,
51(7), pp. 1521–1533.

[CrossRef]
Greco,
L.
, and
Cuomo,
M.
, 2012, “
On the Force Density Method for Slack Cable Nets,” Int. J. Solids Struct.,
49(13), pp. 1526–1540.

[CrossRef]
Garusi,
E.
,
Tralli,
A.
, and
Cazzani,
A.
, 2004, “
An Unsymmetric Stress Formulation for Reissner–Mindlin Plates: A Simple and Locking-Free Rectangular Element,” Int. J. Comput. Eng. Sci.,
5(3), pp. 589–618.

[CrossRef]
Reccia,
E.
,
Cazzani,
A.
, and
Cecchi,
A.
, 2012, “
FEM–DEM Modeling for Out-of-Plane Loaded Masonry Panels: A Limit Analysis Approach,” Open Civil Eng. J.,
6(1), pp. 231–238.

[CrossRef]
Greco,
L.
, and
Cuomo,
M.
, 2014, “
Consistent Tangent Operator for an Exact Kirchhoff Rod Model,” Continuum Mech. Thermodyn.,
27(4–5), pp. 861–877.

Carassale,
L.
, and
Piccardo,
G.
, 2010, “
Non-Linear Discrete Models for the Stochastic Analysis of Cables in Turbulent Wind,” Int. J. Nonlinear Mech.,
45(3), pp. 219–231.

[CrossRef]
Javili,
A.
, and
Steinmann,
P.
, 2009, “
A Finite Element Framework for Continua With Boundary Energies. Part I: The Two-Dimensional Case,” Comput. Meth. Appl. Mech. Eng.,
198(27), pp. 2198–2208.

[CrossRef]
Javili,
A.
, and
Steinmann,
P.
, 2010, “
A Finite Element Framework for Continua With Boundary Energies. Part II: The Three-Dimensional Case,” Comput. Methods Appl. Mech. Eng.,
199(9), pp. 755–765.

[CrossRef]
Turco,
E.
, and
Caracciolo,
P.
, 2000, “
Elasto-Plastic Analysis of Kirchhoff Plates by High Simplicity Finite Elements,” Comput. Methods Appl. Mech. Eng.,
190(5–7), pp. 691–706.

[CrossRef]
Ciancio,
D.
,
Carol,
I.
, and
Cuomo,
M.
, 2007, “
Crack Opening Conditions at ‘Corner Nodes' in FE Analysis With Cracking Along Mesh Lines,” Eng. Fracture Mech.,
74(13), pp. 1963–1982.

[CrossRef]
Ciancio,
D.
,
Carol,
I.
, and
Cuomo,
M.
, 2006, “
On Inter-Element Forces in the FEM-Displacement Formulation, and Implications for Stress Recovery,” Int. J. Numer. Methods Eng.,
66(3), pp. 502–528.

[CrossRef]
Hughes,
T. J.
,
Cottrell,
J. A.
, and
Bazilevs,
Y.
, 2005, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement,” Comput. Methods Appl. Mech. Eng.,
194(39), pp. 4135–4195.

[CrossRef]
Cazzani,
A.
,
Malagù,
M.
, and
Turco,
E.
, “
Isogeometric Analysis of Plane-Curved Beams,” Math. Mech. Solids, epub.

Greco,
L.
, and
Cuomo,
M.
, 2013, “
B-Spline Interpolation of Kirchhoff–Love Space Rods,” Comput. Methods Appl. Mech. Eng.,
256, pp. 251–269.

[CrossRef]
Greco,
L.
, and
Cuomo,
M.
, 2014, “
An Implicit G1 Multi Patch B-Spline Interpolation for Kirchhoff–Love Space Rod,” Comput. Methods Appl. Mech. Eng.,
269, pp. 173–197.

[CrossRef]
Cazzani,
A.
,
Malagù,
M.
, and
Turco,
E.
, 2014, “
Isogeometric Analysis: A Powerful Numerical Tool for the Elastic Analysis of Historical Masonry Arches,” Continuum Mech. Thermodyn., epub.

Cazzani,
A.
,
Malagù,
M.
,
Turco,
E.
, and
Stochino,
F.
, “
Constitutive Models for Strongly Curved Beams in the Frame of Isogeometric Analysis,” Math. Mech. Solids, epub.

Cuomo,
M.
,
Contrafatto,
L.
, and
Greco,
L.
, 2014, “
A Variational Model Based on Isogeometric Interpolation for the Analysis of Cracked Bodies,” Int. J. Eng. Sci.,
80(SI), pp. 173–188.

[CrossRef]
De Luycker,
E.
,
Benson,
D.
,
Belytschko,
T.
,
Bazilevs,
Y.
, and
Hsu,
M.
, 2011, “
X-FEM in Isogeometric Analysis for Linear Fracture Mechanics,” Int. J. Numer. Methods Eng.,
87(6), pp. 541–565.

[CrossRef]
Allen,
M. P.
, 2004, “
Introduction to Molecular Dynamics Simulation,” Comput. Soft Matter,
23, pp. 1–28.

Tinsley Oden,
J.
,
Prudhomme,
S.
,
Romkes,
A.
, and
Bauman,
P. T.
, 2006, “
Multiscale Modeling of Physical Phenomena: Adaptive Control of Models,” SIAM J. Sci. Comput.,
28(6), pp. 2359–2389.

[CrossRef]
Piola,
G.
, 2014, The Complete Works of Gabrio Piola: Commented English Translation, Vol.
38,
Springer,
Cham, Switzerland.

Silling,
S. A.
,
Epton,
M.
,
Weckner,
O.
,
Xu,
J.
, and
Askari,
E.
, 2007, “
Peridynamic States and Constitutive Modeling,” J. Elasticity,
88(2), pp. 151–184.

[CrossRef]
Silling,
S.
, and
Lehoucq,
R.
, 2010, “
Peridynamic Theory of Solid Mechanics,” Adv. Appl. Mech.,
44(1), pp. 73–166.

Askari,
E.
,
Bobaru,
F.
,
Lehoucq,
R.
,
Parks,
M.
,
Silling,
S.
, and
Weckner,
O.
, 2008, “
Peridynamics for Multiscale Materials Modeling,” J. Phys.: Conf. Ser.,
125(1), p. 012078.

[CrossRef]
Silling,
S. A.
, and
Askari,
E.
, 2005, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics,” Comput. Struct.,
83(17), pp. 1526–1535.

[CrossRef]
Parks,
M. L.
,
Lehoucq,
R. B.
,
Plimpton,
S. J.
, and
Silling,
S. A.
, 2008, “
Implementing Peridynamics Within a Molecular Dynamics Code,” Comput. Phys. Commun.,
179(11), pp. 777–783.

[CrossRef]
Leyendecker,
S.
,
Ober-Blöbaum,
S.
,
Marsden,
J. E.
, and
Ortiz,
M.
, 2010, “
Discrete Mechanics and Optimal Control for Constrained Systems,” Optim. Control Appl. Methods,
31(6), pp. 505–528.

[CrossRef]
Ferretti,
M.
,
Madeo,
A.
,
dell'Isola,
F.
, and
Boisse,
P.
, 2014, “
Modeling the Onset of Shear Boundary Layers in Fibrous Composite Reinforcements by Second-Gradient Theory,” Z. Angew. Math. Phys.,
65(3), pp. 587–612.

[CrossRef]
Andreaus,
U.
,
dell'Isola,
F.
, and
Porfiri,
M.
, 2004, “
Piezoelectric Passive Distributed Controllers for Beam Flexural Vibrations,” J. Vib. Control,
10(5), pp. 625–659.

[CrossRef]
Maurini,
C.
,
Pouget,
J.
, and
dell'Isola,
F.
, 2006, “
Extension of the Euler–Bernoulli Model of Piezoelectric Laminates to Include 3D Effects Via a Mixed Approach,” Comput. Struct.,
84(22), pp. 1438–1458.

[CrossRef]
dell'Isola,
F.
,
Maurini,
C.
, and
Porfiri,
M.
, 2004, “
Passive Damping of Beam Vibrations Through Distributed Electric Networks and Piezoelectric Transducers: Prototype Design and Experimental Validation,” Smart Mater. Struct.,
13(2), p. 299.

[CrossRef]
Gantzounis,
G.
,
Serra-Garcia,
M.
,
Homma,
K.
,
Mendoza,
J.
, and
Daraio,
C.
, 2013, “
Granular Metamaterials for Vibration Mitigation,” J. Appl. Phys.,
114(9), p. 093514.

[CrossRef]
Alessandroni,
S.
,
Andreaus,
U.
,
dell'Isola,
F.
, and
Porfiri,
M.
, 2005, “
A Passive Electric Controller for Multimodal Vibrations of Thin Plates,” Comput. Struct.,
83(15), pp. 1236–1250.

[CrossRef]
Bailey,
T.
, and
Ubbard,
J. E.
, 1985, “
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam,” J. Guid. Control Dyn.,
8(5), pp. 605–611.

[CrossRef]
Behrens,
S.
,
Fleming,
A. J.
, and
Moheimani,
S. O. R.
, 2003, “
A Broadband Controller for Shunt Piezoelectric Damping of Structural Vibration,” Smart Mater. Struct.,
12(1), p. 18.

[CrossRef]
Corr,
L. R.
, and
Clark,
W. W.
, 2003, “
A Novel Semi-Active Multi-Modal Vibration Control Law for a Piezoceramic Actuator,” ASME J. Vib. Acoust.,
125(2), pp. 214–222.

[CrossRef]
Dimitriadis,
E. K.
,
Fuller,
C. R.
, and
Rogers,
C. A.
, 1991, “
Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates,” ASME J. Vib. Acoust.,
113(1), pp. 100–107.

[CrossRef]
Hollkamp,
J. J.
, 1994, “
Multimodal Passive Vibration Suppression With Piezoelectric Materials and Resonant Shunts,” J. Intell. Mater. Syst. Struct.,
5(1), pp. 49–57.

[CrossRef]
Lallart,
M.
,
Lefeuvre,
É.
,
Richard,
C.
, and
Guyomar,
D.
, 2008, “
Self-Powered Circuit for Broadband, Multimodal Piezoelectric Vibration Control,” Sens. Actuators A,
143(2), pp. 377–382.

[CrossRef]
Pipkin,
A.
, 1981, “
Plane Traction Problems for Inextensible Networks,” Q. J. Mech. Appl. Math.,
34(4), pp. 415–429.

[CrossRef]
Rivlin,
R.
, 1997, “
Plane Strain of a Net Formed by Inextensible Cords,” Collected Papers of RS Rivlin,
Springer,
New York, pp. 511–534.

D'Agostino,
M. V.
,
Giorgio,
I.
,
Greco,
L.
,
Madeo,
A.
, and
Boisse,
P.
, 2015, “
Continuum and Discrete Models for Structures Including (Quasi-) Inextensible Elasticae With a View to the Design and Modeling of Composite Reinforcements,” Int. J. Solids Struct.,
59, pp. 1–17.

[CrossRef]
dell'Isola,
F.
,
D'Agostino,
M. V.
,
Madeo,
A.
,
Boisse,
P.
, and
Steigmann,
D.
, “
Minimization of Shear Energy in Two Dimensional Continua With Two Orthogonal Families of Inextensible Fibers: The Case of Standard Bias Extension Test,” J. Elasticity, epub.

dell'Isola,
F.
,
Giorgio,
I.
, and
Andreaus,
U.
, 2015, “
Elastic Pantographic 2D Lattices: A Numerical Analysis on Static Response and Wave Propagation,” Proc. Est. Acad. Sci.,
64(3), pp. 219–225.

[CrossRef]
Descamps,
B.
, 2014, Computational Design of Lightweight Structures: Form Finding and Optimization,
Wiley,
Weinheim, Germany.

Dell'Isola,
F.
,
Della Corte,
A.
,
Greco,
L.
, and
Luongo,
A.
, “
Plane Bias Extension Test for a Continuum With Two Inextensible Families of Fibers: A Variational Treatment With Lagrange Multipliers and a Perturbation Solution,” Int. J. Solids Struct. (in press).

dell'Isola,
F.
, and
Steigmann,
D.
, 2015, “
A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics,” J. Elasticity,
118(1), pp. 113–125.

[CrossRef]
Hamila,
N.
, and
Boisse,
P.
, 2013, “
Tension Locking in Finite-Element Analyses of Textile Composite Reinforcement Deformation,” C. R. Méc.,
341(6), pp. 508–519.

[CrossRef]
Hamila,
N.
, and
Boisse,
P.
, 2013, “
Locking in Simulation of Composite Reinforcement Deformations. Analysis and Treatment,” Composites, Part A,
53, pp. 109–117.

[CrossRef]
Federico,
S.
, 2010, “
On the Linear Elasticity of Porous Materials,” Int. J. Mech. Sci.,
52(2), pp. 175–182.

[CrossRef]
Hollister,
S. J.
, 2005, “
Porous Scaffold Design for Tissue Engineering,” Nat. Mater.,
4(7), pp. 518–524.

[CrossRef] [PubMed]
Serra,
F.
,
Vishnubhatla,
K. C.
,
Buscaglia,
M.
,
Cerbino,
R.
,
Osellame,
R.
,
Cerullo,
G.
, and
Bellini,
T.
, 2011, “
Topological Defects of Nematic Liquid Crystals Confined in Porous Networks,” Soft Matter,
7(22), pp. 10945–10950.

[CrossRef]
Araki,
T.
,
Buscaglia,
M.
,
Bellini,
T.
, and
Tanaka,
H.
, 2011, “
Memory and Topological Frustration in Nematic Liquid Crystals Confined in Porous Materials,” Nat. Mater.,
10(4), pp. 303–309.

[CrossRef] [PubMed]
Andreaus,
U.
, and
Colloca,
M.
, 2009, “
Prediction of Micromotion Initiation of an Implanted Femur Under Physiological Loads and Constraints Using the Finite Element Method,” Proc. Inst. Mech. Eng, Part H,
223, pp. 589–605.

[CrossRef]
Andreaus,
U.
,
Colloca,
M.
, and
Iacoviello,
D.
, 2013, Modeling of Trabecular Architecture as Result of an Optimal Control Procedure (Lecture Notes in Computational Vision and Biomechanics), Vol.
4,
Springer,
Dordrecht.

Andreaus,
U.
,
Colloca,
M.
,
Iacoviello,
D.
, and
Pignataro,
M.
, 2011, “
Optimal-Tuning PID Control of Adaptive Materials for Structural Efficiency,” Struct. Multidiscip. Optim.,
43(1), pp. 43–59.

[CrossRef]
Andreaus,
U.
,
Giorgio,
I.
, and
Lekszycki,
T.
, 2014, “
A 2-D Continuum Model of a Mixture of Bone Tissue and Bio-Resorbable Material for Simulating Mass Density Redistribution Under Load Slowly Variable in Time,” Z. Angew. Math. Mech./J. Appl. Math. Mech.,
94(12), pp. 978–1000.

[CrossRef]
Park,
J.-G.
,
Ye,
Q.
,
Topp,
E. M.
,
Lee,
C. H.
,
Kostoryz,
E. L.
,
Misra,
A.
, and
Spencer,
P.
, 2009, “
Dynamic Mechanical Analysis and Esterase Degradation of Dentin Adhesives Containing a Branched Methacrylate,” J. Biomed. Mater. Res., Part B,
91(1), pp. 61–70.

[CrossRef]
Andreaus,
U.
,
Giorgio,
I.
, and
Madeo,
A.
, 2014, “
Modeling of the Interaction Between Bone Tissue and Resorbable Biomaterial as Linear Elastic Materials With Voids,” Z. Angew. Math. Phys.,
66(1), pp. 209–237.

[CrossRef]
Ganghoffer,
J.-F.
, 2012, “
A Contribution to the Mechanics and Thermodynamics of Surface Growth. Application to Bone External Remodeling,” Int. J. Eng. Sci.,
50(1), pp. 166–191.

[CrossRef]
Giorgio,
I.
,
Andreaus,
U.
, and
Madeo,
A.
, 2014, “
The Influence of Different Loads on the Remodeling Process of a Bone and Bio-Resorbable Material Mixture With Voids,” Continuum Mech. Thermodyn., epub.

Laurent,
C.
,
Durville,
D.
,
Vaquette,
C.
,
Rahouadj,
R.
, and
Ganghoffer,
J.
, 2013, “
Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair,” Biomech. Cells Tissues,
9(1), pp. 1–44.

Laurent,
C.
,
Durville,
D.
,
Mainard,
D.
,
Ganghoffer,
J.-F.
, and
Rahouadj,
R.
, 2012, “
Designing a New Scaffold for Anterior Cruciate Ligament Tissue Engineering,” J. Mech. Behav. Biomed. Mater.,
12(1), pp. 184–196.

[CrossRef] [PubMed]
Laurent,
C.
,
Durville,
D.
,
Wang,
X.
,
Ganghoffer,
J.-F.
, and
Rahouadj,
R.
, 2010, “
Designing a New Scaffold for Anterior Cruciate Ligament Tissue Engineering,” Comput. Methods Biomech. Biomed. Eng.,
13(S1), pp. 87–88.

[CrossRef]
Misra,
A.
,
Spencer,
P.
,
Marangos,
O.
,
Wang,
Y.
, and
Katz,
J. L.
, 2005, “
Parametric Study of the Effect of Phase Anisotropy on the Micromechanical Behaviour of Dentin–Adhesive Interfaces,” J. R. Soc. Interface,
2(3), pp. 145–157.

[CrossRef] [PubMed]
Spencer,
P.
,
Ye,
Q.
,
Park,
J.
,
Topp,
E. M.
,
Misra,
A.
,
Marangos,
O.
,
Wang,
Y.
,
Bohaty,
B. S.
,
Singh,
V.
,
Sene,
F.
,
Eslick,
J.
,
Camarda,
K.
, and
Katz,
J. L.
, 2010, “
Adhesive/Dentin Interface: The Weak Link in the Composite Restoration,” Ann. Biomed. Eng.,
38(6), pp. 1989–2003.

[CrossRef] [PubMed]
Steigmann,
D. J.
, and
dell'Isola,
D.
, “
Mechanical Response of Fabric Sheets to Three-Dimensional Bending, Twisting, and Stretching,” Acta Mech. Sin.,
31(3), pp. 373–382.

[CrossRef]
Ye,
Q.
,
Spencer,
P.
,
Wang,
Y.
, and
Misra,
A.
, 2007, “
Relationship of Solvent to the Photopolymerization Process, Properties, and Structure in Model Dentin Adhesives,” J. Biomed. Mater. Res., Part A,
80(2), pp. 342–350.

[CrossRef]
Hu,
L.
,
Pasta,
M.
,
Mantia,
F. L.
,
Cui,
L.
,
Jeong,
S.
,
Deshazer,
H. D.
,
Choi,
J. W.
,
Han,
S. M.
, and
Cui,
Y.
, 2010, “
Stretchable, Porous, and Conductive Energy Textiles,” Nano Lett.,
10(2), pp. 708–714.

[CrossRef] [PubMed]
Piccardo,
G.
,
Ranzi,
G.
, and
Luongo,
A.
, 2014, “
A Complete Dynamic Approach to the Generalized Beam Theory Cross-Section Analysis Including Extension and Shear Modes,” Math. Mech. Solids,
19(8), pp. 900–924.

[CrossRef]
Piccardo,
G.
, and
Tubino,
F.
, 2012, “
Dynamic Response of Euler–Bernoulli Beams to Resonant Harmonic Moving Loads,” Struct. Eng. Mech.,
44(5), pp. 681–704.

[CrossRef]
Luongo,
A.
,
Zulli,
D.
, and
Piccardo,
G.
, 2007, “
A Linear Curved-Beam Model for the Analysis of Galloping in Suspended Cables,” J. Mech. Mater. Struct.,
2(4), pp. 675–694.

[CrossRef]
Altenbach,
H.
,
Bîrsan,
M.
, and
Eremeyev,
V. A.
, 2012, “
On a Thermodynamic Theory of Rods With Two Temperature Fields,” Acta Mech.,
223(8), pp. 1583–1596.

[CrossRef]
Luongo,
A.
, and
Piccardo,
G.
, 1998, “
Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance,” J. Sound Vib.,
214(5), pp. 915–940.

[CrossRef]
Luongo,
A.
,
Zulli,
D.
, and
Piccardo,
G.
, 2008, “
Analytical and Numerical Approaches to Nonlinear Galloping of Internally Resonant Suspended Cables,” J. Sound Vib.,
315(3), pp. 375–393.

[CrossRef]
Luongo,
A.
,
Rega,
G.
, and
Vestroni,
F.
, 1984, “
Planar Non-Linear Free Vibrations of an Elastic Cable,” Int. J. Nonlinear Mech.,
19(1), pp. 39–52.

[CrossRef]
Luongo,
A.
, 1996, “
Perturbation Methods for Nonlinear Autonomous Discrete-Time Dynamical Systems,” Nonlinear Dyn.,
10(4), pp. 317–331.

[CrossRef]
Liu,
W. K.
,
Park,
H. S.
,
Qian,
D.
,
Karpov,
E. G.
,
Kadowaki,
H.
, and
Wagner,
G. J.
, 2006, “
Bridging Scale Methods for Nanomechanics and Materials,” Comput. Methods Appl. Mech. Eng.,
195(13), pp. 1407–1421.

[CrossRef]
Miehe,
C.
,
Schröder,
J.
, and
Schotte,
J.
, 1999, “
Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials,” Comput. Methods Appl. Mech. Eng.,
171(3), pp. 387–418.

[CrossRef]
Brun,
M.
,
Lopez-Pamies,
O.
, and
Castaneda,
P. P.
, 2007, “
Homogenization Estimates for Fiber-Reinforced Elastomers With Periodic Microstructures,” Int. J. Solids Struct.,
44(18), pp. 5953–5979.

[CrossRef]
Milton,
G.
, 1986, “
Modelling the Properties of Composites by Laminates,” Homogenization and Effective Moduli of Materials and Media,
Springer,
New York, pp. 150–174.

Dos Reis,
F.
, and
Ganghoffer,
J.
, 2012, “
Equivalent Mechanical Properties of Auxetic Lattices From Discrete Homogenization,” Comput. Mater. Sci.,
51(1), pp. 314–321.

[CrossRef]
Dos Reis,
F.
, and
Ganghoffer,
J.-F.
, 2011, “
Construction of Micropolar Continua From the Homogenization of Repetitive Planar Lattices,” Mechanics of Generalized Continua,
Springer,
New York, pp. 193–217.

Ladeveze,
P.
, and
Nouy,
A.
, 2003, “
On a Multiscale Computational Strategy With Time and Space Homogenization for Structural Mechanics,” Comput. Methods Appl. Mech. Eng.,
192(28), pp. 3061–3087.

[CrossRef]
Federico,
S.
,
Grillo,
A.
, and
Herzog,
W.
, 2004, “
A Transversely Isotropic Composite With a Statistical Distribution of Spheroidal Inclusions: A Geometrical Approach to Overall Properties,” J. Mech. Phys. Solids,
52(10), pp. 2309–2327.

[CrossRef]
Goda,
I.
,
Assidi,
M.
,
Belouettar,
S.
, and
Ganghoffer,
J.
, 2012, “
A Micropolar Anisotropic Constitutive Model of Cancellous Bone From Discrete Homogenization,” J. Mech. Behav. Biomed. Mater.,
16, pp. 87–108.

[CrossRef] [PubMed]
Ebinger,
T.
,
Steeb,
H.
, and
Diebels,
S.
, 2005, “
Modeling Macroscopic Extended Continua With the Aid of Numerical Homogenization Schemes,” Comput. Mater. Sci.,
32(3), pp. 337–347.

[CrossRef]
Ober-Blöbaum,
S.
,
Junge,
O.
, and
Marsden,
J. E.
, 2011, “
Discrete Mechanics and Optimal Control: An Analysis,” ESAIM: Control Optim. Calculus Var.,
17(2), pp. 322–352.

[CrossRef]
Luongo,
A.
,
Rega,
G.
, and
Vestroni,
F.
, 1986, “
On Nonlinear Dynamics of Planar Shear Indeformable Beams,” ASME J. Appl. Mech.,
53(3), pp. 619–624.

[CrossRef]
Bîrsan,
M.
,
Altenbach,
H.
,
Sadowski,
T.
,
Eremeyev,
V.
, and
Pietras,
D.
, 2012, “
Deformation Analysis of Functionally Graded Beams by the Direct Approach,” Composites, Part B,
43(3), pp. 1315–1328.

[CrossRef]
Mei,
C. C.
, and
Vernescu,
B.
, 2010, Homogenization Methods for Multiscale Mechanics,
World Scientific,
Singapore.

Madeo,
A.
,
Neff,
P.
,
Ghiba,
I.-D.
,
Placidi,
L.
, and
Rosi,
G.
, 2013, “
Wave Propagation in Relaxed Micromorphic Continua: Modeling Metamaterials With Frequency Band-Gaps,” Continuum Mech. Thermodyn.,
27(4), pp. 551–570.

Berezovski,
A.
,
Giorgio,
I.
, and
Della Corte,
A.
, 2015, “
Interfaces in Micromorphic Materials: Wave Transmission and Reflection With Numerical Simulations,” Math. Mech. Solids, epub.

Madeo,
A.
,
Della Corte,
A.
,
Greco,
L.
, and
Neff,
P.
, “
Wave Propagation in Pantographic 2D Lattices With Internal Discontinuities,” Proc. Est. Acad. Sci., epub.

Seppecher,
P.
,
Alibert,
J.-J.
, and
dell'Isola,
F.
, 2011, “
Linear Elastic Trusses Leading to Continua With Exotic Mechanical Interactions,” J. Phys.: Conf. Ser.,
319(1), p. 012018.

[CrossRef]
Giorgio,
I.
,
Culla,
A.
, and
Del Vescovo,
D.
, 2009, “
Multimode Vibration Control Using Several Piezoelectric Transducers Shunted With a Multiterminal Network,” Arch. Appl. Mech.,
79(9), pp. 859–879.

[CrossRef]
Moheimani,
S. O. R.
, 2003, “
A Survey of Recent Innovations in Vibration Damping and Control Using Shunted Piezoelectric Transducers,” IEEE Trans. Control Syst. Technol.,
11(4), pp. 482–494.

[CrossRef]
Porfiri,
M.
,
dell'Isola,
F.
, and
Mascioli,
F.
, 2004, “
Circuit Analog of a Beam and Its Application to Multimodal Vibration Damping, Using Piezoelectric Transducers,” Int. J. Circuit Theory Appl.,
32(4), pp. 167–198.

[CrossRef]
Eremeev,
V.
,
Freidin,
A.
, and
Sharipova,
L.
, 2003, “
Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies,” Dokl. Phys.,
48(7), pp. 359–363.

[CrossRef]
Yeremeyev,
V.
,
Freidin,
A.
, and
Sharipova,
L.
, 2007, “
The Stability of the Equilibrium of Two-Phase Elastic Solids,” J. Appl. Math. Mech.,
71(1), pp. 61–84.

[CrossRef]
Rizzi,
N.
,
Varano,
V.
, and
Gabriele,
S.
, 2013, “
Initial Postbuckling Behavior of Thin-Walled Frames Under Mode Interaction,” Thin-Walled Struct.,
68, pp. 124–134.

[CrossRef]
Rizzi,
N.
, and
Varano,
V.
, 2011, “
On the Postbuckling Analysis of Thin-Walled Frames,” 13th International Conference On Civil, Structural And Environmental Engineering Computing (CC2011), Chania, Crete, Greece, Sept. 6-9, Paper No. 43.

Rizzi,
N.
, and
Varano,
V.
, 2011, “
The Effects of Warping on the Postbuckling Behaviour of Thin-Walled Structures,” Thin-Walled Struct.,
49(9), pp. 1091–1097.

[CrossRef]
Pignataro,
M.
,
Ruta,
G.
,
Rizzi,
N.
, and
Varano,
V.
, 2010, “
Effects of Warping Constraints and Lateral Restraint on the Buckling of Thin-Walled Frames,” ASME Paper No. IMECE2009-12254.

Pignataro,
M.
,
Rizzi,
N.
,
Ruta,
G.
, and
Varano,
V.
, 2009, “
The Effects of Warping Constraints on the Buckling of Thin-Walled Structures,” J. Mech. Mater. Struct.,
4(10), pp. 1711–1727.

[CrossRef]
Ruta,
G.
,
Varano,
V.
,
Pignataro,
M.
, and
Rizzi,
N.
, 2008, “
A Beam Model for the Flexural–Torsional Buckling of Thin-Walled Members With Some Applications,” Thin-Walled Struct.,
46(7–9), pp. 816–822.

[CrossRef]
Pignataro,
M.
,
Rizzi,
N.
, and
Luongo,
A.
, 1991, Stability, Bifurcation, and Postcritical Behaviour of Elastic Structures,
Elsevier,
Amsterdam.

Luongo,
A.
, 2001, “
Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures,” Nonlinear Dyn.,
25(1–3), pp. 133–156.

[CrossRef]
Luongo,
A.
, and
Piccardo,
G.
, 2005, “
Linear Instability Mechanisms for Coupled Translational Galloping,” J. Sound Vib.,
288(4), pp. 1027–1047.

[CrossRef]
Luongo,
A.
, and
Zulli,
D.
, 2012, “
Dynamic Instability of Inclined Cables Under Combined Wind Flow and Support Motion,” Nonlinear Dyn.,
67(1), pp. 71–87.

[CrossRef]
Luongo,
A.
, and
Zulli,
D.
, 2014, “
Aeroelastic Instability Analysis of NES-Controlled Systems Via a Mixed Multiple Scale/Harmonic Balance Method,” J. Vib. Control,
20(13), pp. 1985–1998.

[CrossRef]
Luongo,
A.
, 2010, “
A Unified Perturbation Approach to Static/Dynamic Coupled Instabilities of Nonlinear Structures,” Thin-Walled Struct.,
48(10), pp. 744–751.

[CrossRef]
Di Egidio,
A.
,
Luongo,
A.
, and
Paolone,
A.
, 2007, “
Linear and Non-Linear Interactions Between Static and Dynamic Bifurcations of Damped Planar Beams,” Int. J. Nonlinear Mech.,
42(1), pp. 88–98.

[CrossRef]
Vestroni,
F.
,
Luongo,
A.
, and
Pasca,
M.
, 1995, “
Stability and Control of Transversal Oscillations of a Tethered Satellite System,” Appl. Math. Comput.,
70(2), pp. 343–360.

[CrossRef]
Knight,
J.
,
Page,
T.
, and
Chandler,
H.
, 1991, “
Thermal Instability of the Microstructure and Surface Mechanical Properties of Hydrogenated Amorphous Carbon Films,” Surf. Coat. Technol.,
49(1), pp. 519–529.

[CrossRef]
Ma,
E.
, 2003, “
Nanocrystalline Materials: Controlling Plastic Instability,” Nat. Mater.,
2(1), pp. 7–8.

[CrossRef] [PubMed]
Konkova,
T.
,
Mironov,
S.
,
Korznikov,
A.
, and
Semiatin,
S.
, 2010, “
Microstructure Instability in Cryogenically Deformed Copper,” Scr. Mater.,
63(9), pp. 921–924.

[CrossRef]
Zhu,
H.
,
Maruyama,
K.
,
Seo,
D.
, and
Au,
P.
, 2006, “
Effect of Initial Microstructure on Microstructural Instability and Creep Resistance of XD TiAl Alloys,” Metall. Mater. Trans. A,
37(10), pp. 3149–3159.

[CrossRef]
Lipson,
H.
, and
Kurman,
M.
, 2013, Fabricated: The New World of 3D Printing,
Wiley,
Weinheim, Germany.

Hockaday,
L.
,
Kang,
K.
,
Colangelo,
N.
,
Cheung,
P.
,
Duan,
B.
,
Malone,
E.
,
Wu,
J.
,
Girardi,
L.
,
Bonassar,
L.
,
Lipson,
H.
,
Chu,
C. C.
, and
Butcher,
J. T.
, 2012, “
Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds,” Biofabrication,
4(3), p. 035005.

[CrossRef] [PubMed]
Greiner,
A.
, and
Wendorff,
J. H.
, 2007, “
Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers,” Angew. Chem. Int. Ed.,
46(30), pp. 5670–5703.

[CrossRef]
Sill,
T. J.
, and
von Recum,
H. A.
, 2008, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering,” Biomaterials,
29(13), pp. 1989–2006.

[CrossRef] [PubMed]
Bhardwaj,
N.
, and
Kundu,
S. C.
, 2010, “
Electrospinning: A Fascinating Fiber Fabrication Technique,” Biotechnol. Adv.,
28(3), pp. 325–347.

[CrossRef] [PubMed]
Di Camillo,
D.
,
Fasano,
V.
,
Ruggieri,
F.
,
Santucci,
S.
,
Lozzi,
L.
,
Camposeo,
A.
, and
Pisignano,
D.
, 2013, “
Near-Field Electrospinning of Conjugated Polymer Light-Emitting Nanofibers,” Nanosc.,
5, pp. 11637–11642.

Di Camillo,
D.
,
Ruggieri,
F.
,
Santucci,
S.
, and
Lozzi,
L.
, 2012, “
N-Doped TiO

_{2} Nanofibers Deposited by Electrospinning,” J. Phys. Chem. C,
116(34), pp. 18427–18431.

[CrossRef]
Dell'Erba,
R.
,
dell'Isola,
F.
, and
Rotoli,
G.
, 1999, “
The Influence of the Curvature Dependence of the Surface Tension on the Geometry of Electrically Charged Menisci,” Continuum Mech. Thermodyn.,
11(2), pp. 89–105.

[CrossRef]
Agarwal,
S.
,
Wendorff,
J. H.
, and
Greiner,
A.
, 2009, “
Progress in the Field of Electrospinning for Tissue Engineering Applications,” Adv. Mater.,
21(32–33), pp. 3343–3351.

[CrossRef] [PubMed]
Beachley,
V.
,
Kasyanov,
V.
,
Nagy-Mehesz,
A.
,
Norris,
R.
,
Ozolanta,
I.
,
Kalejs,
M.
,
Stradins,
P.
,
Baptista,
L.
,
da Silva,
K.
,
Grainjero,
J.
,
Wen,
X.
, and
Mironov,
V.
, 2014, “
The Fusion of Tissue Spheroids Attached to Pre-Stretched Electrospun Polyurethane Scaffolds,” J. Tissue Eng.,
5, p. 2041731414556561.

[CrossRef] [PubMed]
Yasuda,
H.
, and
Yang,
J.
, 2015, “
Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability,” Phys. Rev. Lett.,
114(18), p. 185502.

[CrossRef] [PubMed]
Boutin,
C.
, and
Becot,
F. X.
, 2015, “
Theory and Experiments on Poro-Acoustics With Inner Resonators,” Wave Motion,
54, pp. 76–99.

[CrossRef]
Boutin,
L. D. M. C.
, Schwan, “
Depolarization of Mechanical Waves by Anisotropic Metasurface,” J. Appl. Phys.,
117(6), p. 064902.

[CrossRef]
Boutin,
C.
, and
Auriault,
J.
, 1993, “
Rayleigh Scattering in Elastic Composite Materials,” Int. J. Eng. Sci.,
31(12), pp. 1669–1689.

[CrossRef]
Boutin,
C.
,
Rallu,
A.
, and
Hans,
S.
, 2012, “
Large Scale Modulation of High Frequency Acoustic Waves in Periodic Porous Media,” J. Acoust. Soc. Am.,
132(6), pp. 3622–3636.

[CrossRef] [PubMed]
Boutin,
C.
,
Royer,
P.
, and
Auriault,
J.
, 1998, “
Acoustic Absorption of Porous Surfacing With Dual Porosity,” Int. J. Solids Struct.,
35(34), pp. 4709–4737.

[CrossRef]
Chesnais,
C.
,
Hans,
S.
, and
Boutin,
C.
, 2007, “
Wave Propagation and Diffraction in Discrete Structures: Effect of Anisotropy and Internal Resonance,” PAMM,
7(1), p. 1090.

[CrossRef]
Fokin,
V.
,
Ambati,
M.
,
Sun,
C.
, and
Zhang,
X.
, 2007, “
Method for Retrieving Effective Properties of Locally Resonant Acoustic Metamaterials,” Phys. Rev. B,
76(14), p. 144302.

[CrossRef]
Wang,
P.
,
Casadei,
F.
,
Shan,
S.
,
Weaver,
J. C.
, and
Bertoldi,
K.
, 2014, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials,” Phys. Rev. Lett.,
113(1), p. 014301.

[CrossRef] [PubMed]
Altenbach,
H.
,
Eremeyev,
V. A.
, and
Morozov,
N. F.
, 2013, “
Mechanical Properties of Materials Considering Surface Effects,” IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures,
Beijing, Aug. 8–12, pp. 105–115.

Nesterenko,
V.
,
Daraio,
C.
,
Herbold,
E.
, and
Jin,
S.
, 2005, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media,” Phys. Rev. Lett.,
95(15), p. 158702.

[CrossRef] [PubMed]
Eremeyev,
V. A.
, 2015, “
On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects,” Acta Mech., epub.

Cuenot,
S.
,
Frétigny,
C.
,
Demoustier-Champagne,
S.
, and
Nysten,
B.
, 2004, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy,” Phys. Rev. B,
69(16), p. 165410.

[CrossRef]
Chen,
C.
,
Shi,
Y.
,
Zhang,
Y.
,
Zhu,
J.
, and
Yan,
Y.
, 2006, “
Size Dependence of Young's Modulus in ZnO Nanowires,” Phys. Rev. Lett.,
96(7), p. 075505.

[CrossRef] [PubMed]
Liu,
X.
,
Luo,
J.
, and
Zhu,
J.
, 2006, “
Size Effect on the Crystal Structure of Silver Nanowires,” Nano Lett.,
6(3), pp. 408–412.

[CrossRef] [PubMed]
Jing,
G. Y.
,
Duan,
H. L.
,
Sun,
X. M.
,
Zhang,
Z. S.
,
Xu,
J.
,
Li,
Y. D.
,
Wang,
J. X.
, and
Yu,
D. P.
, 2006, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy,” Phys. Rev. B,
73(23), p. 235409.

[CrossRef]
He,
J.
, and
Lilley,
C. M.
, 2008, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires,” Nano Lett.,
8(7), pp. 1798–1802.

[CrossRef] [PubMed]
Greer,
J. R.
, and
De Hosson,
J. T. M.
, 2011, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect,” Prog. Mater. Sci.,
56(6), pp. 654–724.

[CrossRef]
Greer,
J. R.
, and
Nix,
W. D.
, 2005, “
Size Dependence of Mechanical Properties of Gold at the Sub-Micron Scale,” Appl. Phys. A,
80(8), pp. 1625–1629.

[CrossRef]
Özgür,
Ü.
,
Alivov,
Y. I.
,
Liu,
C.
,
Teke,
A.
,
Reshchikov,
M.
,
Doğan,
S.
,
Avrutin,
V.
,
Cho,
S.-J.
, and
Morkoc,
H.
, 2005, “
A Comprehensive Review of ZnO Materials and Devices,” J. Appl. Phys.,
98(4), p. 041301.

[CrossRef]
Bhushan,
B.
, ed., 2007, Handbook Springer of Nanotechnology,
Springer,
Berlin.

Melechko,
A. V.
,
Merkulov,
V. I.
,
McKnight,
T. E.
,
Guillorn,
M.
,
Klein,
K. L.
,
Lowndes,
D. H.
, and
Simpson,
M. L.
, 2005, “
Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly,” J. Appl. Phys.,
97(4), p. 041301.

[CrossRef]
Grimm,
S.
,
Giesa,
R.
,
Sklarek,
K.
,
Langner,
A.
,
Gosele,
U.
,
Schmidt,
H.-W.
, and
Steinhart,
M.
, 2008, “
Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes Via Cross-Linked Polyacrylate Nanofiber Arrays,” Nano Lett.,
8(7), pp. 1954–1959.

[CrossRef] [PubMed]
Ma,
X.
,
Liu,
A.
,
Xu,
H.
,
Li,
G.
,
Hu,
M.
, and
Wu,
G.
, 2008, “
A Large-Scale-Oriented ZnO Rod Array Grown on a Glass Substrate Via an In Situ Deposition Method and Its Photoconductivity,” Mater. Res. Bull.,
43(8), pp. 2272–2277.

[CrossRef]
Tan,
L. K.
,
Kumar,
M. K.
,
An,
W. W.
, and
Gao,
H.
, 2010, “
Transparent, Well-Aligned TiO

_{2} Nanotube Arrays With Controllable Dimensions on Glass Substrates for Photocatalytic Applications,” ACS Appl. Mater. Interfaces,
2(2), pp. 498–503.

[CrossRef] [PubMed]
Hutchens,
S. B.
,
Needleman,
A.
, and
Greer,
J. R.
, 2011, “
Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes,” J. Mech. Phys. Solids,
59(10), pp. 2227–2237.

[CrossRef]
Spinelli,
P.
,
Verschuuren,
M.
, and
Polman,
A.
, 2012, “
Broadband Omnidirectional Antireflection Coating Based on Subwavelength Surface Mie Resonators,” Nat. Commun.,
3, p. 692.

[CrossRef] [PubMed]
Naumenko,
K.
, and
Eremeyev,
V. A.
, 2014, “
A Layer-Wise Theory for Laminated Glass and Photovoltaic Panels,” Compos. Struct.,
112, pp. 283–291.

[CrossRef]
Kang,
X.
,
Zi,
W.-W.
,
Xu,
Z.-G.
, and
Zhang,
H.-L.
, 2007, “
Controlling the Micro/Nanostructure of Self-Cleaning Polymer Coating,” Appl. Surf. Sci.,
253(22), pp. 8830–8834.

[CrossRef]
Rios,
P.
,
Dodiuk,
H.
,
Kenig,
S.
,
McCarthy,
S.
, and
Dotan,
A.
, 2007, “
Transparent Ultra-Hydrophobic Surfaces,” J. Adhes. Sci. Technol.,
21(5–6), pp. 399–408.

[CrossRef]
Sanjay,
S. L.
,
Annaso,
B. G.
,
Chavan,
S. M.
, and
Rajiv,
S. V.
, 2012, “
Recent Progress in Preparation of Superhydrophobic Surfaces: A Review,” J. Surf. Eng. Mater. Adv. Technol.,
2(2), pp. 76–94.

Dastjerdi,
R.
, and
Montazer,
M.
, 2010, “
A Review on the Application of Inorganic Nano-Structured Materials in the Modification of Textiles: Focus on Anti-Microbial Properties,” Colloids Surf. B,
79(1), pp. 5–18.

[CrossRef]
Contreras,
C. B.
,
Chagas,
G.
,
Strumia,
M. C.
, and
Weibel,
D. E.
, 2014, “
Permanent Superhydrophobic Polypropylene Nanocomposite Coatings by a Simple One-Step Dipping Process,” Appl. Surf. Sci.,
307, pp. 234–240.

[CrossRef]
Tian,
X.
,
Yi,
L.
,
Meng,
X.
,
Xu,
K.
,
Jiang,
T.
, and
Lai,
D.
, 2014, “
Superhydrophobic Surfaces of Electrospun Block Copolymer Fibers With Low Content of Fluorosilicones,” Appl. Surf. Sci.,
307, pp. 566–575.

[CrossRef]
Heinonen,
S.
,
Huttunen-Saarivirta,
E.
,
Nikkanen,
J.-P.
,
Raulio,
M.
,
Priha,
O.
,
Laakso,
J.
,
Storgårds,
E.
, and
Levänen,
E.
, 2014, “
Antibacterial Properties and Chemical Stability of Superhydrophobic Silver-Containing Surface Produced by Sol–Gel Route,” Colloids Surf. A,
453, pp. 149–161.

[CrossRef]
Escobar,
A. M.
, and
Llorca-Isern,
N.
, 2014, “
Superhydrophobic Coating Deposited Directly on Aluminum,” Appl. Surf. Sci.,
305, pp. 774–782.

[CrossRef]
Li,
J.
,
Zheng,
W.
,
Zeng,
W.
,
Zhang,
D.
, and
Peng,
X.
, 2014, “
Structure, Properties and Application of a Novel Low-Glossed Waterborne Polyurethane,” Appl. Surf. Sci.,
307, pp. 255–262.

[CrossRef]
Ganesh,
V. A.
,
Raut,
H. K.
,
Nair,
A. S.
, and
Ramakrishna,
S.
, 2011, “
A Review on Self-Cleaning Coatings,” J. Mater. Chem.,
21(41), pp. 16304–16322.

[CrossRef]
Liu,
K.
, and
Jiang,
L.
, 2012, “
Bio-Inspired Self-Cleaning Surfaces,” Annu. Rev. Mater. Res.,
42, pp. 231–263.

[CrossRef]
Longley,
W. R.
, and
Name,
R. G. V.
, eds., 1928, The Collected Works of J. Willard Gibbs, PHD., LL.D. I Thermodynamics,
Longmans,
New York.

Rowlinson,
J. S.
, and
Widom,
B.
, 2003, Molecular Theory of Capillarity,
Dover,
New York.

de Gennes,
P. G.
,
Brochard-Wyart,
F.
, and
Quéré,
D.
, 2004, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves,
Springer,
New York.

Gurtin,
M. E.
, and
Murdoch,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal.,
57(4), pp. 291–323.

[CrossRef]
Gurtin,
M. E.
, and
Murdoch,
A. I.
, 1975, “
Addenda to Our Paper. A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal.,
59(4), pp. 389–390.

[CrossRef]
Duan,
H. L.
,
Wang,
J.
, and
Karihaloo,
B. L.
, 2008, “
Theory of Elasticity at the Nanoscale,” Adv. Appl. Mech.,
42, pp. 1–68.

Wang,
J.
,
Huang,
Z.
,
Duan,
H.
,
Yu,
S.
,
Feng,
X.
,
Wang,
G.
,
Zhang,
W.
, and
Wang,
T.
, 2011, “
Surface Stress Effect in Mechanics of Nanostructured Materials,” Acta Mech. Solida Sin.,
24(1), pp. 52–82.

[CrossRef]
Javili,
A.
,
McBride,
A.
, and
Steinmann,
P.
, 2012, “
Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review,” ASME Appl. Mech. Rev.,
65, p. 010802.

[CrossRef]
Wang,
J.
,
Duan,
H. L.
,
Huang,
Z. P.
, and
Karihaloo,
B. L.
, 2006, “
A Scaling Law for Properties of Nano-Structured Materials,” Proc. R. Soc. A,
462(2069), pp. 1355–1363.

[CrossRef]
Steigmann,
D. J.
, and
Ogden,
R. W.
, 1999, “
Elastic Surface–Substrate Interactions,” Proc. R. Soc. A,
455(1982), pp. 437–474.

[CrossRef]
Javili,
A.
, and
Steinmann,
P.
, 2010, “
On Thermomechanical Solids With Boundary Structures,” Int. J. Solids Struct.,
47(24), pp. 3245–3253.

[CrossRef]
Povstenko,
Y.
, 2013, “
Mathematical Modeling of Phenomena Caused by Surface Stresses in Solids,” Surface Effects in Solid Mechanics,
H. Altenbach
and
N. F. Morozov
, eds.,
Springer,
Berlin, pp. 135–153.

Rubin,
M.
, and
Benveniste,
Y.
, 2004, “
A Cosserat Shell Model for Interphases in Elastic Media,” J. Mech. Phys. Solids,
52(5), pp. 1023–1052.

[CrossRef]
Kim,
C. I.
,
Schiavone,
P.
, and
Ru,
C.-Q.
, 2011, “
Effect of Surface Elasticity on an Interface Crack in Plane Deformations,” Proc. R. Soc. A,
467(2136), pp. 3530–3549.

[CrossRef]
Kim,
C.
,
Ru,
C.
, and
Schiavone,
P.
, 2013, “
A Clarification of the Role of Crack-Tip Conditions in Linear Elasticity With Surface Effects,” Math. Mech. Solids,
18(1), pp. 59–66.

[CrossRef]
Schiavone,
P.
, and
Ru,
C.-Q.
, 2009, “
Solvability of Boundary Value Problems in a Theory of Plane-Strain Elasticity With Boundary Reinforcement,” Int. J. Eng. Sci.,
47(11), pp. 1331–1338.

[CrossRef]
Javili,
A.
,
McBride,
A.
,
Steinmann,
P.
, and
Reddy,
B.
, 2012, “
Relationships Between the Admissible Range of Surface Material Parameters and Stability of Linearly Elastic Bodies,” Philos. Mag.,
92(28–30), pp. 3540–3563.

[CrossRef]
Guo,
J. G.
, and
Zhao,
Y. P.
, 2005, “
The Size-Dependent Elastic Properties of Nanofilms With Surface Effects,” J. Appl. Phys.,
98(7), p. 074306.

[CrossRef]
Wang,
Z. Q.
,
Zhao,
Y.-P.
, and
Huang,
Z.-P.
, 2010, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures,” Int. J. Eng. Sci.,
48(2), pp. 140–150.

[CrossRef]
Eremeyev,
V. A.
,
Altenbach,
H.
, and
Morozov,
N. F.
, 2009, “
The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates,” Dokl. Phys.,
54(2), pp. 98–100.

[CrossRef]
Altenbach,
H.
,
Eremeyev,
V. A.
, and
Morozov,
N. F.
, 2012, “
Surface Viscoelasticity and Effective Properties of Thin-Walled Structures at the Nanoscale,” Int. J. Eng. Sci.,
59(SI), pp. 83–89.

[CrossRef]
Altenbach,
H.
, and
Eremeyev,
V. A.
, 2011, “
On the Shell Theory on the Nanoscale With Surface Stresses,” Int. J. Eng. Sci.,
49(12), pp. 1294–1301.

[CrossRef]
Lagowski,
J.
,
Gatos,
H. C.
, and
Sproles,
E. S.
, 1975, “
Surface Stress and Normal Mode of Vibration of Thin Crystals: GaAs,” Appl. Phys. Lett.,
26(9), pp. 493–495.

[CrossRef]
Gurtin,
M. E.
,
Markenscoff,
X.
, and
Thurston,
R. N.
, 1976, “
Effect of Surface Stress on Natural Frequency of Thin Crystals,” Appl. Phys. Lett.,
29(9), pp. 529–530.

[CrossRef]
Wang,
G.-F.
, and
Feng,
X.-Q.
, 2007, “
Effects of Surface Elasticity and Residual Surface Tension on the Natural Frequency of Microbeams,” Appl. Phys. Lett.,
90(23), p. 231904.

[CrossRef]
Kampshoff,
E.
,
Hahn,
E.
, and
Kern,
K.
, 1994, “
Correlation Between Surface Stress and the Vibrational Shift of CO Chemisorbed on Cu Surfaces,” Phys. Rev. Lett.,
73(5), pp. 704–707.

[CrossRef] [PubMed]
Wang,
G. F.
, and
Feng,
X. Q.
, 2010, “
Effect of Surface Stresses on the Vibration and Buckling of Piezoelectric Nanowires,” EPL,
91(5), p. 56007.

[CrossRef]
Huang,
Z.
, and
Wang,
J.
, 2006, “
A Theory of Hyperelasticity of Multi-Phase Media With Surface/Interface Energy Effect,” Acta Mech.,
182(3), pp. 195–210.

[CrossRef]
Huang,
Z.
, and
Sun,
L.
, 2007, “
Size-Dependent Effective Properties of a Heterogeneous Material With Interface Energy Effect: From Finite Deformation Theory to Infinitesimal Strain Analysis,” Acta Mech.,
190(1), pp. 151–163.

[CrossRef]
Zhu,
H. X.
,
Wang,
J. X.
, and
Karihaloo,
B. L.
, 2009, “
Effects of Surface and Initial Stresses on the Bending Stiffness of Trilayer Plates and Nanofilms,” J. Mech. Mater. Struct.,
4(3), pp. 589–604.

[CrossRef]
Huang,
Z.
, and
Wang,
J.
, 2012, “
Micromechanics of Nanocomposites With Interface Energy Effect,” Handbook on Micromechanics and Nanomechanics,
S. Li
and
X.-L. Gao
, eds.,
Pan Stanford Publishing,
Stanford, CA, pp. 303–348.

Javili,
A.
, and
Steinmann,
P.
, 2009, “
A Finite Element Framework for Continua With Boundary Energies. Part I: The Two-Dimensional Case,” Comput. Methods Appl. Mech. Eng.,
198(27–29), pp. 2198–2208.

[CrossRef]
Javili,
A.
, and
Steinmann,
P.
, 2011, “
A Finite Element Framework for Continua With Boundary Energies. Part III: The Thermomechanical Case,” Comput. Methods Appl. Mech. Eng.,
200(21), pp. 1963–1977.

[CrossRef]
Javili,
A.
,
McBride,
A.
, and
Steinmann,
P.
, 2012, “
Numerical Modelling of Thermomechanical Solids With Mechanically Energetic (Generalised) Kapitza Interfaces,” Comput. Mater. Sci.,
65, pp. 542–551.

[CrossRef]
Arroyo,
M.
, and
Belytschko,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films,” J. Mech. Phys. Solids,
50(9), pp. 1941–1977.

[CrossRef]
Sfyris,
D.
,
Sfyris,
G.
, and
Galiotis,
C.
, 2014, “
Curvature Dependent Surface Energy for a Free Standing Monolayer Graphene: Some Closed Form Solutions of the Non-Linear Theory,” Int. J. Nonlinear Mech.,
67, pp. 186–197.

[CrossRef]
Miller,
R. E.
, and
Shenoy,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotechnology,
11(3), p. 139.

[CrossRef]
Shenoy,
V. B.
, 2005, “
Atomistic Calculations of Elastic Properties of Metallic FCC Crystal Surfaces,” Phys. Rev. B,
71(9), p. 094104.

[CrossRef]
Ibach,
H.
, 1997, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures,” Surf. Sci. Rep.,
29(5), pp. 195–263.

[CrossRef]
De Gennes,
P. G.
, 1981, “
Some Effects of Long Range Forces on Interfacial Phenomena,” J. Phys. Lett.,
42(16), pp. 377–379.

[CrossRef]
Seppecher,
P.
, 1996, Les Fluides de Cahn-Hilliard,
Mémoire D'habilitation à Diriger des Recherches, Université du Sud Toulon,
La Garde, France.

dell'Isola,
F.
, and
Seppecher,
P.
, 1997, “
Edge Contact Forces and Quasi-Balanced Power,” Meccanica,
32(1), pp. 33–52.

[CrossRef]
dell'Isola,
F.
, and
Seppecher,
P.
, 1995, “
The Relationship Between Edge Contact Forces, Double Forces and Interstitial Working Allowed by the Principle of Virtual Power,” C. R. Acad. Sci. Sér. II,
321(8), pp. 303–308.

dellIsola,
F.
,
Lekszycki,
T.
,
Pawlikowski,
M.
,
Grygoruk,
R.
, and
Greco,
L.
, 2015, “
Designing a Light Fabric Metamaterial Being Highly Macroscopically Tough Under Directional Extension: First Experimental Evidence,” Z. Angew. Math. Phys.,
66(6), pp. 3473–3498.

[CrossRef]
Giorgio,
I.
,
Grygoruk,
R.
,
dell'Isola,
F.
, and
Steigmann,
D. J.
, 2015, “
Pattern Formation in the Three-Dimensional Deformations of Fibered Sheets,” Mech. Res. Commun.,
69, pp. 164–171.

[CrossRef]G. L. B. A. C. M.
dell'Isola,
F.
, “
Second Gradient Shear Energies for Pantographic 2D Plates: Numerical Simulations Towards Explanation of Experimental Evidence,” (in preparation).

Ball,
J. M.
, 1976, “
Convexity Conditions and Existence Theorems in Nonlinear Elasticity,” Arch. Ration. Mech. Anal.,
63(4), pp. 337–403.

[CrossRef]
Kim,
D.-H.
,
Lu,
N.
,
Ma,
R.
,
Kim,
Y.-S.
,
Kim,
R.-H.
,
Wang,
S.
,
Wu,
J.
,
Won,
S. M.
,
Tao,
H.
,
Islam,
A.
,
Yu,
K. J.
,
Kim,
T.-i.
,
Chowdhury,
R.
,
Ying,
M.
,
Xu,
L.
,
Li,
M.
,
Chung,
H.-J.
,
Keum,
H.
,
McCormick,
M.
,
Liu,
P.
,
Zhang,
Y.-W.
,
Omenetto,
F. G.
,
Huang,
Y.
,
Coleman,
T.
, and
Rogers,
J. A.
, 2011, “
Epidermal Electronics,” Science,
333(6044), pp. 838–843.

[CrossRef] [PubMed]
Arumugam,
V.
,
Naresh,
M.
, and
Sanjeevi,
R.
, 1994, “
Effect of Strain Rate on the Fracture Behaviour of Skin,” J. Biosci.,
19(3), pp. 307–313.

[CrossRef]
Elsner,
P.
,
Berardesca,
E.
, and
Wilhelm,
K.-P.
, 2001, Bioengineering of the Skin: Skin Biomechanics, Vol.
5,
Taylor & Francis,
New York.

Geerligs,
M.
,
Van Breemen,
L.
,
Peters,
G.
,
Ackermans,
P.
,
Baaijens,
F.
, and
Oomens,
C.
, 2011, “
in vitro Indentation to Determine the Mechanical Properties of Epidermis,” J. Biomech.,
44(6), pp. 1176–1181.

[CrossRef] [PubMed]
Goriely,
A.
,
Destrade,
M.
, and
Amar,
M. B.
, 2006, “
Instabilities in Elastomers and in Soft Tissues,” Q. J. Mech. Appl. Math.,
59(4), pp. 615–630.

[CrossRef]
Lacour,
S. P.
,
Jones,
J.
,
Wagner,
S.
,
Li,
T.
, and
Suo,
Z.
, 2005, “
Stretchable Interconnects for Elastic Electronic Surfaces,” Proc. IEEE,
93(8), pp. 1459–1467.

[CrossRef]
Pailler-Mattei,
C.
,
Bec,
S.
, and
Zahouani,
H.
, 2008, “
in vivo Measurements of the Elastic Mechanical Properties of Human Skin by Indentation Tests,” Med. Eng. Phys.,
30(5), pp. 599–606.

[CrossRef] [PubMed]
Sekitani,
T.
,
Noguchi,
Y.
,
Hata,
K.
,
Fukushima,
T.
,
Aida,
T.
, and
Someya,
T.
, 2008, “
A Rubberlike Stretchable Active Matrix Using Elastic Conductors,” Science,
321(5895), pp. 1468–1472.

[CrossRef] [PubMed]
Rey,
T.
,
Le Cam,
J.-B.
,
Chagnon,
G.
,
Favier,
D.
,
Rebouah,
M.
,
Razan,
F.
,
Robin,
E.
,
Didier,
P.
,
Heller,
L.
,
Faure,
S.
, and
Janouchova,
K.
, 2014, “
An Original Architectured NiTi Silicone Rubber Structure for Biomedical Applications,” Mater. Sci. Eng. C,
45, pp. 184–190.

[CrossRef]
Galilei,
G.
, 1894, Opere: Edizione Nazionale sotto gli Auspicii di Sua Maestà il re d'Italia, Vol.
6,
Barbèra,
Florence, Italy.

Drake,
S.
, 1957, Discoveries and Opinions of Galileo,
Doubleday,
New York.

Cannone,
M.
, and
Friedlander,
S.
, 2003, “
Navier: Blow-Up and Collapse,” Not. AMS,
50(1), pp. 7–13.

Picon,
A.
, 1988, “
Navier and the Introduction of Suspension Bridges in France,” Construction History,
4, pp. 21–34.