Discussion of “Nanoscale Fluid Mechanics and Energy Conversion” (Chen, X., Xu, B., and Liu, L., 2014, ASME Appl. Mech. Rev., 66(5), p. 050803)

[+] Author and Article Information
Jan Eijkel

MESA+ Institute for Nanotechnology,
Twente University,
Enschede, The Netherlands

Manuscript received February 28, 2014; final manuscript received May 8, 2014; published online May 29, 2014. Editor: Harry Dankowicz.

Appl. Mech. Rev 66(5), 055501 (May 29, 2014) (5 pages) Paper No: AMR-14-1026; doi: 10.1115/1.4027648 History: Received February 28, 2014; Revised May 08, 2014

The authors of the paper “Nanoscale Fluid Mechanics and Energy Conversion” have presented an overview of recent applications of nanofluidic phenomena for energy conversion and storage. The discussion given here aims to place this paper in a broader context of literature and theory.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Chen, X., Xu, B., and Liu, L., 2014, “Nanoscale Fluid Mechanics and Energy Conversion,” ASME Appl. Mech. Rev., 66(5), p. 050803. [CrossRef]
Eijkel, J. C. T., and van den Berg, A., 2005, “Nanofluidics: What is it and What can we Expect From it?” Microfluid. Nanofluid., 1, pp. 249–267. [CrossRef]
Eijkel, J. C. T., 2008, “Searching Lab on a Chip Literature: The Need for a Glossary of Terms and Concepts in a Multidisciplinary Environment,” Lab Chip, 8, pp. 1781–1783. [CrossRef] [PubMed]
Sparreboom, W., van den Berg, A., and Eijkel, J. C. T., 2009, “Principles and Applications of Nanofluidic Transport,” Nat. Nanotechnol., 4, pp. 713–720. [CrossRef] [PubMed]
Eijkel, J. C. T., and van den berg, A., 2010, “Nanofluidics and the Chemical Potential Applied to Solvent and Solute Transport,” Chem. Soc. Rev., 39, pp. 957–973. [CrossRef] [PubMed]
Lamb, H., 1995, Hydrodynamics, Cambridge University, Cambridge, UK.
Vinogradova, O., 1999, “Slippage of Water Over Hydrophobic Surfaces,” Int. J. Miner. Process., 56, pp. 31–60. [CrossRef]
Eijkel, J. C. T., 2007, “Liquid Slip in Micro- and Nanofluidics: Recent Research and its Possible Implications,” Lab Chip, 7, pp. 1–4. [CrossRef]
Eroshenko, V., Regis, R. C., Soulard, M., and Patarin, J., 2001, “Energetics: A New Field of Applications for Hydrophobic Zeolites,” J. Am. Chem. Soc., 123, pp. 8129–8130. [CrossRef] [PubMed]
Suciu, C. V., Iwatsubo, T., and De, S., 2003, “Investigation of a Colloidal Damper,” J. Colloid Interface Sci., 259, pp. 62–80. [CrossRef] [PubMed]
Eroshenko, V. A., and Lazarev, Y. F., 2012, “Rheology and Dynamics of Repulsive Chlatrates,” J. Appl. Mech. Tech. Phys., 53, pp. 98–112. [CrossRef]
Suciu, C. V., Iwatsuboa, T., Yaguchi, K., and Ikenaga, M., 2005, “Novel and Global Approach of the Complex and Interconnected Phenomena Related to the Contact Line Movement Past a Solid Surface From Hydrophobized Silica Gel,” J. Colloid Interface Sci., 283, pp. 196–214. [CrossRef] [PubMed]
Eroshenko, V. A., 2007, “A New Paradigm of Mechanical Energy Dissipation. Part 1: Theoretical Aspects and Practical Solutions,” Proc. Inst. Mech. Eng., Part D, 221, pp. 285–300. [CrossRef]
Eroshenko, V. A., Piatiletov, I., Coiffard, L., and Stoudenets, V., 2007, “A New Paradigm of Mechanical Energy Dissipation. Part 2: Experimental Investigation and Effectiveness of a Novel Car Damper,” Proc. Inst. Mech. Eng., Part D, 221, pp. 301–312. [CrossRef]
Grosu, Y., Levtushenko, O., Eroshenko, V., Nedelec, J. M., and Grolier, J. P. E., 2014, “Water Intrusion/Extrusion in Hydrophobized Mesoporous Silica Gel in a Wide Temperature Range: Capillarity, Bubble Nucleation and Line Tension Effects,” Colloids Surf., A, 441, pp. 549–555. [CrossRef]
Suciu, C. V., Tani, S., and Miyoshi, K., 2010, “Experimental Study on the Thermal Characteristics of a Colloidal Damper,” J. Syst. Des. Dyn., 4(6), pp. 899–913.
Zhou, G. Y., and Sun, L. Z., 2008, “Smart Colloidal Dampers With On-Demand Controllable Damping Capability,” Smart Mater. Struct., 17, p. 055023. [CrossRef]
Laouir, A., Luo, L., Tondeur, D., Cachot, T., and Le Goff, P., 2003, “Thermal Machines Based on Surface Energy of Wetting: Thermodynamic Analysis,” AIChE J.49, pp. 764–781. [CrossRef]
Xu, B., Qiao, Y., Park, T., Tak, M., Zhou, Q., and Chen, X., 2011, “A Conceptual Thermal Actuation System Driven by Interface Tension of Nanofluids,” Energy Environ. Sci., 4, pp. 3632–3639. [CrossRef]
Kuiper, S., and Hendriks, B. H. W., 2004, “Variable-Focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett., 85, pp. 1128–1130. [CrossRef]
Hayes, R. A., and Feenstra, B. J., 2003, “Video-Speed Electronic Paper Based on Electrowetting,” Nature, 425, pp. 383–385. [CrossRef] [PubMed]
Quickenden, T. I., and Mua, Y., 1995, “A Review of Power Generation in Aqueous Thermogalvanic Cells,” J. Electrochem. Soc., 142, pp. 3986–3994. [CrossRef]
Gunawan, A., Lin, C. H., Buttry, D. A., Mujica, V., Taylor, R. A., Prasher, R. S., and Phelan, P. E., 2013, “Liquid Thermoelectrics: Review of Recent And Limited New Data of Thermogalvanic Cell Experiments,” Nanosci. Microsci. Thermophys. Eng., 17, pp. 304–323. [CrossRef]
Hu, R., Cola, B. A., Haram, N., Barisci, J. N., Lee, S., Stoughton, S., Wallace, G., Too, C., Thomas, M., Gestos, A., dela Cruz, M. E., Ferraris, J. P., Zakhidov, A. A., and Baughman, R. H., 2010, “Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell,” Nano Lett., 10, pp. 838–846. [CrossRef] [PubMed]
Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., Kim, Y. H., Chen, Y., and Baughman, R. H., 2012, “Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters,” Adv. Funct. Mater., 22, pp. 477–489. [CrossRef]
Kuzminskii, Y. V., Zasukha, V. A., and Kuzminskaya, G. Y., 1994, “Thermoelectric Effects in Electrochemical Systems. Nonconventional Thermogalvanic Cells,” J. Power Sources, 52, pp. 231–242. [CrossRef]
Hudak, N. S., and Amatucci, G. G., 2011, “Energy Harvesting and Storage With Lithium-Ion Thermogalvanic Cells,” J. Electrochem. Soc., 158, pp. A572–A579. [CrossRef]
Lim, H., Lu, W., Chen, X., and Qiao, Y., 2013, “Effects of Ion Concentration on Thermally-Chargeable Double-Layer Supercapacitors,” Nanotechnology, 24, p. 465401. [CrossRef] [PubMed]
Pennathur, S., Eijkel, J. C. T., and van den Berg, A., 2007, “Energy Conversion in Microsystems: Is There a Role for Micro/Nanofluidics?” Lab Chip, 7, pp. 1234–1237. [CrossRef] [PubMed]
Morrison, F. A., and Osterle, J. F., 1965, “Electrokinetic Energy Conversion in Ultrafine Capillaries,” J. Chem. Phys., 43, pp. 2111–2115. [CrossRef]
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C., and Dekker, C., 2007, “Power Generation by Pressure-Driven Transport of Ions in Nanofluidic Channels,” Nano Lett., 7, pp. 1022–1025. [CrossRef] [PubMed]
Xie, Y. B., Wang, X. W., Xue, J. M., Jin, K., Chen, L., and Wang, Y. G., 2008, “Electric Energy Generation in Single Track-Etched Nanopores,” Appl. Phys. Lett., 93, p. 163116. [CrossRef]
Ren, Y., and Stein, D., 2008, “Slip-Enhanced Electrokinetic Energy Conversion in Nanofluidic Channels,” Nanotechnology, 19, p. 195707. [CrossRef] [PubMed]
Gillespie, D., 2012, “High Energy Conversion Efficiency in Nanofluidic Channels,” Nano Lett., 12, pp. 1410–1416. [CrossRef] [PubMed]
Berli, C. L. A., 2010, “Electrokinetic Energy Conversion in Microchannels Using Polymer Solutions,” J. Colloid Interface Sci., 349, pp. 446–448. [CrossRef] [PubMed]
Bandopadhyay, A., and Chakraborty, S., 2012, “Giant Augmentations in Electro-Hydro-Dynamic Energy Conversion Efficiencies of Nanofluidic Devices Using Viscoelastic Fluids,” Appl. Phys. Lett., 101, p. 043905. [CrossRef]
Nguyen, T., Xie, Y., de Vreede, L. J., van den Berg, A., and Eijkel, J. C. T., 2013, “Highly Enhanced Energy Conversion From the Streaming Current by Polymer Addition,” Lab Chip, 13, pp. 3210–3216. [CrossRef] [PubMed]
Kilsgaard, B. S., Haldrup, S., Catalano, J., and Bentien, A., 2014, “High Figure of Merit for Electrokinetic Energy Conversion in Nafion Membranes,” J. Power Sources, 247, pp. 235–242. [CrossRef]
Siria, A., Poncharal, P., Biance, A. L., Fulcrand, R., Blase, X., Purcell, S. T., and Bocquet, L., 2013, “Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube,” Nature, 494, pp. 455–458. [CrossRef] [PubMed]
Xie, Y., Bos, D., de Vreede, L. J., de Boer, H. L., van der Meulen, M. J., Versluis, M., Sprenkels, A. J., van den Berg, A., and Eijkel, J. C. T., 2014, “High-efficiency Ballistic Electrostatic Generator Using Microdroplets,” Nat. Commun. 5, Paper No. 3575. [CrossRef]
Veerman, J., Saakes, M., Metz, S. J., and Harmsen, G. J., 2009, “Reverse Electrodialysis: Performance of a Laboratory Device With 50 Cells on the Mixing of Sea and River Water,” J. Membr. Sci., 327, pp. 136–144. [CrossRef]
Yasuda, R., Noji, H., Kinosita, K., and Yoshida, M., 1998, “F1-ATPase is a Highly Efficient Molecular Motor That Rotates With Discrete 120 deg Steps,” Cell, 93, pp. 1117–1124. [CrossRef] [PubMed]
Kinosita, K., Yasuda, R., Noji, H., and Adachi, K., 2000, “A Rotary Molecular Motor That can Work at Near 100% Efficiency,” Philos. Trans. R. Soc. London, Ser. B, 355, pp. 473–489. [CrossRef]
Meister, M., Lowe, G., and Berg, H. C., 1987, “The Proton Flux Through the Bacterial Flagellar Motor,” Cell, 49, pp. 643–650. [CrossRef] [PubMed]
Eijkel, J. C. T., and van den Berg, A., 2006, “Active Transport: A New Chemical Separation Method?” Lab Chip, 6, pp. 597–600. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Classical disciplines related to nanofluidics and some of the relevant subjects studied therein. Reprinted with permission from Eijkel, J. C. T., and van den Berg, A., 2005, “Nanofluidics: What is it and What can we Expect From it?” Microfluid. Nanofluid., 1, pp. 249–267. Copyright 2005 Springer.

Grahic Jump Location
Fig. 2

Some different forms of energy, and the efficiency of the most efficient conversion methods between them (indicated by the width of the arrows). The bracketed numbers in red indicate the sections of the paper of Chen et al. [1].




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In