The Role of Friction in Mechanical Joints

[+] Author and Article Information
L. Gaul, R. Nitsche

Institute A of Mechanics, University of Stuttgart, Germany

Appl. Mech. Rev 54(2), 93-106 (Mar 01, 2001) (14 pages) doi:10.1115/1.3097294 History: Online April 07, 2009


Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure. For improving the performance of systems, many studies have been carried out to predict, measure, and/or enhance the energy dissipation of friction. This article reviews approaches for describing the nonlinear transfer behavior of bolted joint connections. It gives an overview of modeling issues. The models include classical and practical engineering models. Constitutive and phenomenological friction models describing the nonlinear transfer behavior of joints are discussed. The models deal with the inherent nonlinearity of contact forces (eg, Hertzian contact), and the nonlinear relationship between friction and relative velocity in the friction interface. The research activities in this area are a combination of theoretical, numerical, and experimental investigations. Various solution techniques commonly applied to friction-damped systems are presented and discussed. Recent applications are outlined with regard to the use of joints as semi-active damping devices for vibration control. Several application areas for friction damped systems due to mechanical joints and connections like shells and beams with friction boundaries are presented. This review article includes 134 references.

Copyright © 2001 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In