Static, vibration, and buckling analyses and applications to one-sheet hyperboloidal shells of revolution

[+] Author and Article Information
SN Krivoshapko

Peoples’ Friendship University of Russia, 6, Miklukho-Maklaya Str, Moscow, 117198, Russia; nkrivoshapko@mail.ru

Appl. Mech. Rev 55(3), 241-270 (Jun 10, 2002) (30 pages) doi:10.1115/1.1470479 History: Online June 10, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Reinhardt  J (1988), Untersuchungen zu monolitischen Trinkwasserbehältern aus Stahlbeton, Wiss. Ber. Techn. Hochsch., Leipzig, 23, 51–57.
Petropavlovskaya IA (1988), Hyperboloidal Constructions in Engineering Mechanics, M: Nauka, 230p (in Russian).
Krivoshapko SN (1999), Shells in the form of one sheet hyperboloid of revolution, Stroit. materiali i konstruck., 2 , Moscow: VNIINTPI, 60p (in Russian).
Yakushina AA (2000), Results and perspectives of the application of thin shells with ruled middle surfaces of non-canonical forms, Trudi molodih uchonih, Part 1, S.-Petersburg: SPbGASU, 117–122 (in Russian).
Hampe E and Greiner-Mai D (1975), Senkung des Materialeisatzes and Verbesserung der Tragqualität von hyperbolischen Grosskuhlturmen, Bauplan-Bautechn.
Hampe E (1975), Kühltürme.-VEB Verl. Bauswesen, Berlin.
Almási  J (1981), Approximate determination of cooling tower dimensions, Period Polytechn. Civ. Eng., 25(1–2), 95–110.
Grafkin VG, Egorov LA, and Kuznetsov NV (1981), Erection of a cooling tower of the great capacity for the Rovno nuclear power plant, Stroit. atomn. elektrostantsiy, Moscow: Informenergo, 4 (in Russian).
Kubaneishvili  AS and Tushishvili  ZI (1983), A precast prestressed reinforced concrete tower support of electric power transmission air-lines, Energotehn. stroitelstvo, 4, 78–79 (in Russian).
Kubaneishvili AS (1988), Prestressed reinforced concrete constructions of power buildings in the form of a one-sheet hyperboloid and peculiarity of their analysis, Beton i zhelezob. v energet str-ve: Mater Vses konf po betonu i zhelezob, Kazan, Okt 1988; Tbilisi, 76–82 (in Russian).
Sapozhnikov  FV, Kubaneishvili  AS, Bondarenko  AS, and Meladze  FG (1980), Prestressed precast tower construction for high chimneys, Energetich. stroitelstvo, 11, 74–76 (in Russian).
Meladze  FG, Kubaneishvili  AS, Bondarenko  VB, and Geleyshvili  IS (1981), A new construction of a prestressed flume, Gidrotehnika i melioratsiya, 11, 45–46 (in Russian).
Gokhar-Harmandaryan IG (1972), Spatial Dome Buildings, Moscow: “Stroyizdat,” 150p (in Russian).
Form  J, Krätzig  WB, Peters  HL, and Wittek  U (1984), Ringversteifte Naturzugkühltürme aus Stahlbeton, Bauingenieur, 59(8), 281–290.
Kim  En Be, Skoromnikov  AM, Gorbatov  AI, and Dzhurinskiy  MB (1977), Design and building of poured-in-place reinforced concrete cooling towers in Poland, Energetich. stroitelstvo za rubezhom, 1, 15–28 (in Russian).
Baykov VN et al. (1990), Designing of Reinforced Concrete Spatial Construction, M: Stroyizdat, 232p (in Russian).
Langosz  A (1982), Doswiadczalia analiza naprezen krytycznych powloki chlodni kominowej, Zesz. nauk. WSI Opolu. Bud., 18, 111–116 (in Polish).
Mungan I (1998), Natural draught cooling towers: 30 years of research and practice, Spatial Structures in new Renovation Projects of Building and Construction: Proc Int Cong ICSS-98, Vol II, June, Moscow, 860–865.
Report of the Committee of Inquiry into Collapse of Cooling Towers at Ferry-bridge (1965), Central Electricity Generating Board, London, England, Nov.
Raguzin AV (1990), Perfection of organization of the mass line building of a complex of cooling towers, VII Symp MAGI po gradirnyam i brizg. basseinam, Leningrad, May-June (in Russian).
Gould  PL and Guedelhoefer  OC (1989), Repair and completion of a damaged cooling tower, J Structural Engineering, 115(3), 576–593.
Neporozhniy PS (ed) (1985), Construction of Heat and Nuclear Power Stations: Reference Book of Civil Engineers, Moscow: Stroyizdat, Vol 2, 640p (in Russian).
Kintner-Meyer  M and Emery  AF (1995), Cost-optimal design for cooling towers, ASHRAE J., 37(4), 8p.
(1984), Reinforced concrete cooling tower shells—Practice and commentary, J. Am. Concr. Inst., 81 (6), 623–631.
IASSS, “Recommendations for the design of hyperbolic or other similarly shaped cooling towers,” 1979 Madrid, 32p.
Boltuhov  AA (1976), Experimental and theoretical investigations of vibrations of cooling towers, Tr. TsNIIPromzdaniy, 40, 80–108 (in Russian).
(1987), Cable and suspended shells of cooling towers: Annotated review of inventions Moscow: TsNIISK and Orgenergostroy, 65p. (in Russian).
Tarasov  AA (1985), On vibration of a shell of revolution stiffened by stiffening ribs, Prikl. Mekh., 21(5), 50–54 (in Russian).
Tarasov  AA (1989), Static analysis of a shell of revolution with complex structure of regular ribs, Stroit. mehanika i raschet soor., 3, 17–20 (in Russian).
Neporozhniy PS (ed) (1985), Construction of heat and nuclear power stations: Reference Book of Civil Engineers Moscow: Stroyizdat, Vol. 1, 376p (in Russian).
(1977), Steel-rope construction of counterflow cooling towers with a height of 146m (Germany), Ref inform–TsINIS, Ser YIII, Vip 4 , 29–35 (in Russian).
Dzhurinskiy  MB and Stolipin  NN (1985), Features of technology of erection of a cable cooling tower for a nuclear power plant, Energetich. stroitelstvo za rubezhom, 6, 17–20 (in Russian).
Urmanov  AA (1981), Net shell surfaces of cable cooling towers permiting a free axial offset of the cables in the units, Expres-inf VNIIS, 1, 5–9 (in Russian).
Dzhurinskiy  MB (1985), Analysis and design of cable cooling tower, Prom. stroitelstvo, 9, 18–20 (in Russian).
Niewiadomski  J (1982), Analiza statyczna ciegnowych chlodni kominowych, Arch. inz. lad., 28(3-4), 231–251 (in Polish).
Wuwer  W (1982), Badania modelowe chlodni kominowej typu ciegnowego, Arch. inz. lad., 28(3-4), 253–270 (in Polish).
Form  J, Krings  W, Mazur  H, and Peters  HL (1980), Berechnung und Ausführung eines ringversteiften Naturzugkühltürms aus Stahlbeton, Beton-und Stahlbetonbau, 75(9), 205–219.
Krätzig  WB, Peters  HL, and Zerna  W (1978), Naturzugkühltürme aus Stahlbeton-derzeitiger Stand und Entwiklungsmöglichkeiten, Beton-und Stahlbetonbau, 73(3), 66–72.
Zerna W and Mungan I (1980), Construction and design of large cooling towers, Proc., ASCE, 106 , ST2, 531–544.
Chmielewski T and Golczyk M (1989), Reliability approach to the design, con-struction and use of natural draught cooling towers, Reliab and Optimiz Struct Syst’88: Proc 2nd IFIP WG 5 Conf, London, Sept. 1988 Berlin, 27–41.
(1990), Mozhaysk experimental and mechanical plant Moscow: VPSMO “Soyuzgidrospetsstroy,” 97p (in Russian).
Egorova AI (1979), On analysis of supporting constructions of reinforced concrete cooling towers, Probl. soversh. stroit. konstruktsiy na Dalnem Vostoke, Habarovsk: HPl, 77–85 (in Russian).
Lebedev BA and Kudinov YA (1990), A principle of analysis of a cooling tower and supporting colonnade as an indivisible spatial system, Metodi rascheta slozhn stroit konstruk s uchetom svoystv, L: LISI, 63–75 (in Russian).
May  B (1980), Gründungssysteme für hyperbolische Naturzugkühltürme, Tiefbau-Ingenieurbau-Strassenbau, 22(8), 667–673.
Blocki  J (1988), Stress states in cooling tower caused by thermal field, J Struct. Eng., 114(12), 2633–2651.
Przemieniecki JS (1968), Theory of Matrix Structural Analysis, McGraw-Hill.
Sen  SK and Gould  PL (1973), Hyperboloidal shells on discrete supports, J. Struct. Div. ASCE, 99(3), 595–603.
Kovács  B (1981), Analysis of skew supporting columns of cooling towers, Period. polytechn. Civ. Eng., 25(1-2), 47–61.
Dobovisek  B (1989), Zum Einfluß der Lagerungsbedingungen des unteren Randes auf das dynamische Verhalten von Kühlturmschalen, Bauingenieur, 64(1), 27–33.
S  Wang and W  Lu (1990), Theoretical and experimental solutions of cooling tower-soil system, J. Eng. Mech., 116(4), 862–869.
Abdurashidov  KS, Mirsaidov  M, and Hamraev  P (1985), Natural vibrations of axisymmetrical buildings, Stroit. meh. i raschet soor., 5, 53–56 (in Russian).
Nikaeen  A and Lin  AN (1989), Dynamic response of model concrete shell part II, Exp. Tech., 13(1), 13–15.
Nikaeen  A and Swartz  SE (1988), Construction and initial tests of an improved model of a concrete cooling tower, Exp. Tech., 12(7), 22–27.
Swartz  SE, Chien  CC, Hu  KK, and Mozaffarian  H (1985), Tests on microconcrete model of hyperbolic cooling tower, Exp. Mech., 25(1), 12–23.
Zia  P and Mostafa  MT (1983), Experimental study of a segmentally constructed cooling tower, J Prest. Concr. Inst., 28(3), 126–149.
Kaluza  R (1986), Doswiadszalna analiza statecznosci powoloki hiperboloidalnej chlodni kominowej, Pr. nauk. Inst. inz. lad. PWrocl., 34, 69–74.
Kaluza  R (1986), Badania modelowe statesznosci powlokowych chlodni kominowysh, Pr. nauk. Inst. bud. PWrosl., 45, 109–116 (in Polish).
Mateja  Osw, Kaluza  R, and Langosz  Al (1981), Doswiadszalna analiza statecznosci powloki chlodni kominowei, Arch. inz. lad., 27(2), 299–308 (in Polish).
Nelson  RL and Thomas  DL (1978), Free vibration analysis of cooling towers with column supports, J. Sound Vib., 57(1), 149–153.
Veronda  DR and Weingarten  VI (1975), Stability of hyperboloidal shells, J. Struct. Div. ASCE, 101(ST7), 1585–1602.
Walther  J and Wölfel  R (1978), Stabilitätsverhalten hyperbolischer Kühltürmschalen unter Windbelastung, Bauplan-Bautechn., 32(11), 510–512.
Winney  PE (1978), The modal properties of model and full scale cooling towers, J. Sound Vib., 57(1), 131–148.
Zerna  W and Mungan  I (1981), Úber das Beulen von Kühlturmschalen mit Versteifungsringen, Beton-und Stahlbetonbau, 76(2), 33–36.
Kim EB and Yugay TZ (1984), An investigation of influence of concrete inhomogeneity on the bearing capacity of a poured-in-place reinforced concrete cooling tower shell, Bses in-t po proekt org energ str-va Orgenergo-stroy, Moscow, Dep. v “Informenergo” 8 okt No 1613en-84Dep, 14p (in Russian).
Abel  JF, Billington  DP, Nagy  DA, and Wiita-Dworkin  Chr (1982), Buckling of cooling towers, J. Struct. Div. ASCE, 108(ST10), 2162–2174.
Mungan  I (1980), Schalenbeulung am Beispiel der Rotationsschalen, Der Stahlbau, 49(2), 41–45.
Zerna W, Basar Y, Mungan I, and Thiemann W (1974), Beuluntersuchungen an hyperbolischen Rotationsschalen, Forschungsberichte des Landes Nordhein-Westfalen, No 2439, p. 71.
Kaluza  R (1986), Doswiadszalna analiza statecznosci powoloki hiperboloidalnej chlodni kominowej, Mech. teor. i stosow., 24(4), 551–571 (in Polish).
Kaluza  R (1974), Badania modelowe powloki hiperboloidalnej chlodni kominowej poddanej wymuszonym przemieszczeniom, Mech. teor. i stosow, 12(4), 439–458 (in Polish).
Kaluza R (1984), Doswiadczalna analiza statecznosci usebrovanej powloki hiperboloidalnej chlodni kominowej Zesz nauk WSI Opolu: Bud, 21, 141–152 (in Polish).
Kaluza  R and Mateja  O (1982), Badania modelowe uzebrowanej powloi hiperboloidalnej, Arch. inz. lad., 28(1-2), 135–142 (in Polish).
Mungan  I (1979), Buckling stresses of stiffened hyperboloidal shells, J. Struct. Div. ASCE, 105(8), 1589–1604.
Mungan  I and Lehmkämper  O (1979), Buckling of stiffened hyperboloidal cooling towers, J. Struct. Div. ASCE, 105 (ST10), Proc Paper 14917, 1999–2007.
Zerna W and Mungan I (1982), Buckling stresses of shells having negative Gaussian curvature, Buckling Shells: Proc of State-of-the Art Colloq, Univ Stuttgart, May, Berlin, 467–485.
Veronda DR and Weingarten VJ (1973), Stability of hyperboloidal shells: An experimental and analytical investigations, USCCE 009, School of Engineering, Univ of Southern California, Los Angeles, CA.
Mungan  I (1982), Buckling of reinforced concrete cooling tower shells: BSS approach, J. Amer. Concr. Inst., 79(5), 387–391.
Mungan  I (1984), Buckling of cooling towers (discussion), J of Structural Eng., 110(1), 184–186.
Owczarzy  J and Kossowski  J (1979), Badania modelu hiperboloidalnej powloki chlodni kominowej pod obciazeniem osiowo symetrycznym, Inz i bud., 36(11), 431–434. (in Polish).
Owczarzy  J (1981), Praca statyczna hiperboloidalnej powloki chlodni kominowej w trakcie jej wznoszenia w swietle badan modelowych, Inz i budown., 38(1), 32–34.
Mercik  S (1986), Analiza doswiadczalna odchylek wykonawczych hiperboloidalnej powloki chlodni kominowej, Pr. nauk. Inst. inz. lad PWrocl., 34, 121–127 (in Polish).
Gigiel  JM (1993), An approach to optimal spacing of points for measurements of actual geometry of cooling tower shells, Arch Civ. Eng., 39(2), 179–191.
Salomon  M and Gallias  J-L (1991), Durabilitie des voiles minces en beton arme CAS des refrigerants atmospheriques, Ann. Inst techn. batim. et trav. publics, 496, 13–47.
Juhasova  Em (1982), Poznatky z experimentalnych skušok dynamickych vlastnosti vel’korozmerovej chladiacej veže, Stavebn. čas, 30(1), 55–85 (in Slovak).
Lin AN, Mozaffarian H, and Helpingstine M (1986), Measured dynamic responce of hyperbolic shell, Proc of 3rd US Nat Conf Earthquake Eng, Charleston, SC, Aug, 2 , El Cerrito, CA, 1407–1418.
Schrader  K-H and Drammer  F (1981), Naturzugkühlturmes im Resonanzbereich-Versuchsergebnisse und Folgerungen, Konstr. Ingenieurbau Ber., 35–36, 90–97.
Steinmetz RL, Billington DP, and Abel JF (1978), Hyperbolic cooling tower dynamic responce to wind, J. Struct. Div. ASCE, 104 (ST1).
Tarczynski  L (1982), Pole temperatury w powloce zelbetowej hiperboloidalnej chlodni kominowej, Zesz nauk WSI Opolu. Bud., 18, 273–279 (in Polish).
Herzog  M (1975), Realistische Näherungsberechnung hyperbolischer Kühltürme, Bautechnik, 52(2), 48–61.
Kohli J (1968), Beitrag zum axialsymmetrischen Ausbeulen einer einschaligen Hyperboloid-schale, Dissertation, Karlsruhe.
Dulacska  E, Nagy  J, and Bodi  I (1981), Overall buckling of hyperbolic shells of revolution with unmovable lower edge, Acta technica academiae Scient. Hung., Budapest, 92(1-2), 167–187.
Krätzig W (1968), Statische und dynamische Stabilitat der Kühltürmschale. Naturzug-Kühltürme, Ihre Festigkeitsberechnung und Konstruktion Tagung vom, Vulkan-Verlag, W Classen, Essen.
Rosemeier  G (1973), Zur Stabilitat von hypar und Hyperboloidschalen, Bauingenieur, 48, 437–444.
Der TJ and Fidler R (1968), A model study of the buckling behaviour of hyperbolic shells, Proc of Inst of Civil Engineers, London, 41 , Sept., 105–118.
Wianeczki J (1965), Stabilite d’une coque en form d’hyperboloide de revolution sous des charges uniformement reparties sur les bords et symetriques par rapport a son axe, Cahiers de la Recherche, nr 19, Eyrolles, Paris.
Mateja  Osw (1966), O badaniach nod statecznoscia hiperboloidalnych chlodni wiezowcyh, Inz. i budownictwo, 23, 428–431 (in Polish).
Krätzig  W (1975), Große Naturzug-Kühltürme aus Stahlbeton, VGB Kraftwerkstechnik, 55, 191–197.
Wittek U (1977), Uberblick und theoretische Einfuhrung in das Stabilitatsverhalten von Kuhlturm-Schalen, Kuhlturm-Symp, Bochum Konstruktiver Ingenieurbau Berichte, Heft 29/30.
Rowe RE (1969), Shell modelling, Bolsheprolyotnie obolochki: Int Cong in Leningrad, M: Stroyizdat, 1, 543–556 (in Russian).
Hayashi  K and Gould  PL (1983), Cracking load for a wind-loaded reinforced concrete cooling tower, J. Am. Concr. Inst., 80(4), 318–325.
Cole  PP, Abel  JF, and Billington  DP (1975), Buckling of cooling tower shells, J. Struct. Div. ASCE, 101, NST6, 1185–1222.
Ewing DJF (1971), The buckling and vibration of cooling tower shells. Part 1: Linearized buckling theory, Laboratory report No RD/L/R 1763, Cent Electr Res Labor, Leatherhead, England.
Abel JF, et al. (1979), Buckling of cooling towers, Research Report No 79-SM-1, Dept of Civil Eng, Princeton Univ, Princeton, NJ, Jan.
(1977), Reinforced concrete cooling tower shells—practice and commentary, J. Struct. Div. ASCE, 74 (1), 21–31.
Abel JF and Gould PL (1981), Buckling of concrete cooling tower shells, Concrete Shell Buckling, SP-67, ACI, Detroit, 135–160.
Billington DP and Harris GH (1981), Test methods for concrete shell buckling, Concrete Shell Buckling. Publication SP-67, EP Popov and S Medwadowski (eds), American Concrete Institute, Detroit, MI, 187–231.
Paduart A, et al. (1977), Recommendations for the design of hyperbolic or other similarly shaped cooling towers, Proc of Intern Assoc for Shell and Spatial Structures Working Group, No 3, Brussels, Belgium.
Mungan  I (1974), Buckling stress states of cylindrical shells, J. Struct. Div. ASCE, 100(ST11), 2289–2306.
Mungan  I (1976), Buckling stress states of hyperboloidal shells, J. Struct. Div. ASCE, 102(ST10), 2005–2020.
Hristenko  AS and Zolotoy  YG (1979), Experimental investigations of one-sheet hyperboloid vibrations with the help of holographic interferrometry, Tr. Nikolaev. korablestroit. in-ta, 151, 111–116 (in Russian).
Lin  AN and Nikaeen  A (1989), Dynamic responce of prototype concrete shell: Part I, Exp. Tech., 13(1), 10–13.
Goldenveizer AL (1976), Theory of Elastic Thin Shells, Moscow: Nauka, 512p (in Russian).
Tarnai  T (1980), Existence and uniqueness criteria of the membrane state of shells, I. Hyperbolic shells, Acta techn. Acad. sci. hung., 91(1–2), 81–110.
Radtke  H-G and Schnell  W (1986), Zur Membrantheorie der Rotations-Perboloidschale, Z. Angew. Math. Mech., 66(4), 174–177.
Cicala P (1960), Membrane stresses in hyperboloid shells of revolution, J. Eng. Mech. Div., 86 , (15).
Kolkunov  NV (1959), On analysis of a thin-walled hyperboloidal cooling tower shell, Nauchn. dokl. visshei shkoli, “Stroitelstvo,” 2, 25–35 (in Russian).
Rabich  R (1953), Die Membrantheorie der einschaling hyperbolischen Rotationsschalen, Bauplanung-Bautechnik, 7, 310–318.
Kollar L (1971), Hejak nyulasmentes alakvaltozasai (Inextensional deformations of shells), Epites-Epiteszettudomany, 19–38.
Ogibalov PM and Koltunov MA (1969), Shells and Plates, M, 696p (in Russian).
Csonka  P (1963), Hyperboloid shaped cooling tower with a mantle-wall of equal strength, Acta Tech. Acad Sci. Hung., 44(1–2), 215–221.
Csonka  P (1981), Szélerökkei terhelt forgashiperboloidhejak, Müz. tud., 57(1–2), 111–127 (in Hungarian).
Ingerslev E (1977), Extended membrane analysis of cooling towers, Proc. Inst. Civ. Eng., 63 , Sept., 673–680.
Antonov  EN (1977), On tangential displacements of a shell of revolution, Sb. tr. LISI, 1(136), 131–136 (in Russian).
Sobolev YV and Astryab SM (1985), An analysis of counterflow cooling tower shells subjected to arbitrary surface loading, Metall. konstruktsii, Moscow 83–91 (in Russian).
Boltuhov AA (1961), An analysis of cooling tower shells subjected to arbitrary load using Vlasov’s method, PhD dissertation, Moscow: TsNIISK.
Maslennikov AM (1959), Buckling investigation of cooling towers with rugid lattice framework, Leningrad: LISI, 54p. (in Russian).
Abel JF, Cole PP, and Billington DP (1974), Finite element analysis of tall hyperbolic cooling towers, Proc. of Int Symp on Descrete Methods in Engineering, Centro Inform Studi Esperienze, Segrate, Milan, Italy, Sept, 91–103.
Almannai  A, Bazar  Y, and Mungan  I (1981), Basic aspects of buckling of cooling tower shells, J. Struct. Div. ASCE, 107(ST3), 521–534.
Langhaar  L (1970), Stability of hyperboloidal cooling tower, J. Eng. Mech. Div., 96(EM5), 753–789.
Bushnell D (1972), Stress, stability, and vibration of complex branched shells of revolution: Analysis and User’s manual for BOSOR4, Report LMSC-D243605, National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Mar.
Mang H, Gallagher RH, Gedolin L, and Schwinden WD (1977), Finite element instability analysis of hyperbolic cooling towers, Advances in Civil Engineering Through Engineering Mechanics, ASCE, NY, 246–249.
Maury JF (1978), Stabilite elastique des refrigerants, Proc Int Symp on Very Tall Reinforced Concrete Cooling Towers, Int Assoc for Shell and Spatial Structures, Paris, France, Nov.
Yeh  CH and Shieh  WYJ (1973), Stability and dynamic analysis of cooling towers, J. of the Power Division, ASCE, 99(PO2), 339–347.
Benz  HJ (1977), Kinetische Stabilitätsuntersuchungen für ausgewählte Kühlturmgeometrien, Konstr. Ingenierbau Ber., 29–30, 70–74.
Mungun I (1985), An investigation and designing of large cooling towers, Teoriya i eksperim. issled. prostranst. konstruk. Primenenie obolochek v ing. soor.: Intern. Congress, Moscow, 3 , 156–169 (in Russian).
Rajagopalan  Krishnaiyengar and Iyer  Nadesh R (1980), Buckling of stiffened hyperboloidal cooling towers (Discussion), J. Struct. Div. ASCE, 106(ST12), 2571–2572.
Loo  W and Gu  H-z (1989), Buckling of cooling tower shells with ring-stiffeners, Appl. Math. Mech., 10(7), 559–567 (in Chinese).
Lehmkämper  O (1977), Kühlturmschalen mit Versteifungen in Ring-und Meridian-richtung, Konst. Ingenierbau Ber., 29–30, 97–102.
Chan  ASL and Wolf  IP (1978), Cooling tower supporting columns and reinforcing rings in small and large displacement analyses, Comput. Methods Appl. Mech. Eng., 13(1), 1–26.
Agapov VP (2000), Finite Element Method in Statics Dynamics, and Stability of Spatial Thin-Walled Stiffened Constructions, Moscow: Izd-vo ASV, 156p (in Russian).
Krätzig  WB, Peters  HL, and Zerna  W (1978), Naturzugkühltürme aus Stahlbeton-Derzeitiger Stand und Entwiklungsmöglichkeiten, Beton-und Stahlbetonbau, 73(2), 37–42.
Li  Longyuan and Loo  Wenda (1989), Nonlinear buckling analysis of hyperbolic cooling tower shell with ring-stiffeners, Appl. Math. Mech., 10(2), 114–121.
Zerna W, Mungan I, and Steffen W (1980), Bestimmung der Beulsicherheit von Schalen aus Stahlbeton unter Berücksichtigung der physikalisch nichtlinearen Materialeigenschaften, Schriftenreihe des Deutschen Ausschusses für Stahlbeton, 315 , Berlin: Verlag W Ernst und Sohn.
Zerna W, Mungan I, and Steffen W (1981), A wind-buckling approach for RC cooling towers, Presented at ASME/ASCE Mech Conf June, Boulder CO, Preprint N. EM5.4.
Agapov VP and Bobakov LN (1989), A finite element investigation of stability and stress-strain state of a cooling tower shell under joint action of the own weight and wind load, VZISI, Moscow, Dep v VINITI 24.07.89, 4953–B89, 8p (in Russian).
Mungan  I (1977), Experimentelle Beuluntersuchungen und Stabilitätsnachweise für Kühlturmschalen, Tech. Mitt. Krupp, Forschungsber., 70(8), 499–504.
Mang  H, Gallagher  RH, Gedolin  L, and Torzicky  P (1978), Deformation and stability of wind-loaded cooling tower shells, Ingenieur-Archiv (Berlin), 47(6), 391–410 (in German).
Mayboroda  AL (1990), Stability of a hyperboloid of revolution under bending by a moment, Vestnik LGU, 1(4), 92–96 (in Russian).
Kratzig WB, Basar Y, and Wittek-Bochum U (1982), Nonlinear behavior and elastic stability of shells: Theoretical concepts, Numerical computations, Results, Buckling of shells: Proc of a State-of-the-Art Colloq, Univ Stuttgart, Germany, 19–56.
Benz HJ (1976), Linearisierte Stabilitäts- und Schwingungsberechnung bei versteiften Rotationsschalen, Inst für Konstr Ingenieurbau, Ruhr-Univ. Bochum, Techn.-Wiss. Mitt., 76–10.
Dulacska  Endre (1982), Vasbeton forgáshiperboloidnej hütötornyok stabilitás vizsgálata, Melyepitestud. szemle, 32(7), 282–291 (in Hungarian).
Dulacska  Endre and Nagy  Janos (1978), Axialis terhü, mozdulatlan also peremü hiperbolikus forgashejak altalanos horpadasa, Epites-epiteszettud., 10(1–2), 67–77 (in Hungarian).
Basar  Y and Kreuz  B (1977), Zur linearen Beuluntersuchung hyperbolischer Rotationsschalen unter Außendruck, Stahlbau, 46(3), 80–85.
Combescure A and Pernette E (1987), Linear and non linear buckling of discrete supported cooling tower using special axisymmetric shell elements, Struct. Mech. React. Tech: Trans 9th Int Conf, Lausanne, Aug, B-Rotterdam; Boston, 559–568.
Lehmkämper O (1978), Versteifte Kühlturmschalen aus Stahlbeton, Inst. fur Konstrukt Ingenieurbau, Univ Bochum, 78-6, Tech Reports.
Zerna  W, Almannai  A, Basar  Y, and Mungan  I (1979), Randbedingungen und Beulverhalten von Kühlturmschalen, Beton-und Stahlbetonbau, 74(8), 200–204.
Petrov  MB (1978), The application of variational method for stability analysis of thin elastic shells of revolution, Vestnik LGU, 13, 144–146 (in Russian).
Zerna  W, Mungan  I, and Köpper  H-D (1985), Beulsicherheitsnachweis für Kühlturmschalen ohne und mit Versteifungsringen, Bauingenieur, 60(10), 401–404.
Schnell  W and Horn  J (1989), Näherungsweise Ermittlung der Beulwerte schwach gekrümmter Hyperboloidschalen, Ing.-Arch., 60(2), 132–140.
Egorov VA (1985), On stability analysis of hyperboloidal cooling tower shells, Issledovaniya po stroit mehanike, Moscow: TsNIISK, 150–157 (in Russian).
Herzog  M (1989), Die Tragfähigkeit hyperbolischer Kühltürme ohne Ringsteifen, Bautechnik, 66(7), 233–238.
Antonov  EN (1970), On analysis of a hyperboloidal cooling tower shell subjected to axisymmetrical loading, Sb. trudov LISI, 63, 107–112 (in Russian).
Konderla  Piotr and Palczak  Grazyna (1974), Analiza zamocowania hiperboloidalnej chlodni kominowej, Pr. nauk. Inst. inz. lad. PWr., 13, 27–36 (in Polish).
Tupikin  Al (1977), On one technique of the finite element method application for the determination of a stress-strain state of shells of revolution, Tr. Tsentr. nauchno-issled. i proektno-eksperim. in-ta avtomatiz. sistem v stroit., 16, 114–122 (in Russian).
Lochner N (1973), Die Anwendung des Schalenelements SHEBA, Finite Element Static, Berlin, 353–372.
Konderla  P (1974), Nieliniowe rozwiazanie powloki o ksztalcie hiperboloidy jednopowlokowej Cz.I, obciazenie osiowo-symetryczne, Arch. inz. lad., 20(3), 501–515 (in Polish).
Konderla  P (1974), Nieliniowe rozwiazanie powloki o ksztalcie hiperboloidy jednopowlokowej, Cz.II, obciazenie niesymetryczne, Arch. inz. lad., 20(3), 517–533 (in Polish).
Niemann H-J and Köpper H-D (1996), Influence of adjacent building on wind effects on cooling towers, Proc of 4th Int Symp on Natural Draught Cooling Towers, Kaiserslautern, Germany, AA Balkema, Rotterdam/Brookfield, 83–91.
Lyahina LI (1983), Cooling tower shells with meridional stiffening ribs under action of the own weight and wind loading, Stroit. konstr. seismostoyk. zdaniy i soor. v slozhnih usloviyah Kirgizii, Frunze: FPI, 52–65 (in Russian).
Mihaylov BK and Guriyanov KV (1983), An analysis of reinforced concrete cooling tower shells subjected to wind loading, L.: LISI, Dep v VINITI 23.12.1983, No 7009-83Dep, 16p (in Russian).
Lu W, Shao R, and Xu Z (1986), Edge effect of hyperbolic cooling tower supported by column system, Comput. Mech 86: Theory and Appl. Proc. Int. Conf., Tokyo, 1 , Tokyo, 11/67–11/72.
Gordon  LA, Zhunusov  TZh, Itskov  IE, and Korchinskaya  OA (1985), Stress state of cooling towers with the natural supporting, Beton i zhelezobeton, 9, 11–12 (in Russian).
Gopalakrishnan S, Mahan Rao SVK, Ramanjaneyulu K, and Appa TVSR (1992), Studies on inelastic behavior of RC plate/shell structures (including hyperboloid cooling towers), Annual Rept. 1991-1992, Struct. Eng. Res. Cent-Madras, 10–11.
Reißland  B and Haugeneder  E (1983), Zur Glattung unstetiger Schnittkraftverlaufe bei der berechnung von schalentragwerken mittels der Methode der finiten Elemente, Bauingenieur, 58(1), 27–33.
Kandelaki  NP, Kubaneishvili  AS, and Menagarishvili  ZR (1984), On finite element analysis of tower constructions, Soobshch. Akad. Nauk Gruz. SSR, 115(3), 581–584.
Fan  SC and Luah  MH (1990), New spline finite element for analysis of shells of revolution, J. Eng. Mech., 116(3), 709–726.
Zerna  W, Mungan  I, and Winter  M (1986), Das nichtlineare tragverhalten der kühlturmschalen unter windlast bis zur grenztrag fähigkeit, Bauingenieur, 61(4), 149–153.
Yugay TZ (1984), An investigation and perfection of a method of analysis of poured-in-place reinforced concrete cooling tower shell with taking the properties of concrete into consideration, Vsesoyuz. in-t po proektir. org. energ. str-va Orgenergostroy, M, Dep v “Informenergo” No 1612en–84Dep, 18p (in Russian).
Egorov IB (1981), An analysis of reinforced concrete cooling towers subjected to the self-weight Sovershenstv. metodov rascheta i issled. nov. tipov zhelezob. konstruktsiy, L: LISI, 81–84 (in Russian).
Basar Y (1974), Die numerische Behandlung der linearen und der nichtlinearen Biegetheorie von Rotationsschalen, Techn.-wiss. Mitt. Inst. konstr. Ingenieur-bau Ruhr-Univ. Bochum, 7 , p 138.
Basar  Y (1975), Zur Berechnung von Rotationsschalen mit Mehrstellenverfahren, Bauingenieur, 50(2), 41–48.
Li  H, Chen  P, and Ren  Z (1988), Stress analysis of rotational hyperboloidal cooling tower under concentric load, Mech. Pract., 10(5), 22–26 (in Chinese).
Mateja  Osw and Kaluza  R (1975), Analiza statyczna powloki hiperboloidalnej chlodni kominowejprzy nierownomiernych osiadaniach fundamentu, Inz. i budownictwo, 32(5), 197–203 (in Polish).
Heide  H (1977), Zur Wirkung von Baugrundsetzungen auf Großkühltürme, Bauplan.-Bautech, 31(12), 545–547.
Basar  Y, Harnach  R, and Harte  R (1977), Zum Problem verzerrungsfreier Verbiegungen bei negativ gekrümmten Rotationsschalen, Bautechnik, B54(6), 190–195.
Podilchuk  YM and Kirichenko  AM (1979), Elastic deformation of one-sheet hyperboloidal shells under given displacements of the bottom edge, Visnik Kiev. un-tu. Mat. i meh., 21, 121–127 (in Ukrainian).
Vasiliev  BA (1971), An elestic equilibrium of one-sheet hyperboloid of revolution with given boundary displacements, PMM, 35(4), 729–734 (in Russian).
Solyanik-Krassa KV (1964), Axisymmetrical loading of hyperboloidal shells of revolution, Raschet prostr. konstruktsiy, Vol IX, Moscow: Stroyizdat, 5–18 (in Russian).
Solyanik-Krassa  KV (1952), On solution of axisymmetrical problem of a theory of elasticity, DAN SSSR, 86(3), 481–484 (in Russian).
Han  KJ and Tong  GS (1985), Analysis of hyperbolic cooling tower with local imperfections, Eng. Struct., 7(4), 273–279.
Guang-shan  Tong (1986), Stress analysis of hyperbolic shells of revolution with non-axisymmetrical geometric imperfections, Appl. Math. Mech., 7(10), 867–876 (in Chinese).
Alexandridis  A and Gardner  NJ (1986), Direct evaluation of meridional imperfection forces in cooling tower shells, Civ. Eng. Pract., 4(11), 847–881.
Gould PL (1969), Minimum weight design of hyperbolic cooling towers, J. Struct. Div. ASCE, 95 (2).
Mclone RR (1963), The effects of loading on cooling towers of three different shapes, Constructional Eng., 3 .
Al-Dabbagh  A and Gupta  AK (1979), Meridional imperfection in cooling tower design, J. Struct. Div. ASCE, 105(6), 1089–1102.
Soare Mircea (1967), Cooling towers with constructional imperfections, Concrete, 11 .
Krätzig WB (1968), Kühltürmformen besonder Wirtschaftlichkeit, Vortrags-veroff, Haus d Techn, Essen, p. 180.
Ellinas  ChP, Croll  JGA, and Kemp  KO (1980), Cooling towers with circumferential imperfections, J. Struct. Div. ASCE, 106(12), 2405–2424.
Murata Masaru, Mutoh Atsushi, Kato Shiro, and Matsuoka Osamu (1986), Statistical analysis of stress in rotational thin shells with random geometric imperfections, Shells, Membranes and Space Frames: Proc. IASS Symp Membrane Struct and Space Frames, Osaka, Sept, Vol 1 Amsterdam e.a., 129–136.
Antonov EN and Lebedev VA (1985), On the problem on a stress-strain analysis of reinforced concrete cooling tower shells having geometrical imperfections, Raschet stroit konstruk na statich i dinam nagruzki, L., 68–77 (in Russian).
Waszczyszyn  Z, Pabisek  E, Pamin  J, and Radwanska  M (2000), Nonlinear analysis of a RC cooling tower with geometrical imperfections and a technological cut-out, Eng. Struct., 22(5), 480–489.
Croll  JGA and Kemp  KO (1979), Specifying tolerance limits for meridional imperfections in cooling towers, J. Am. Concr. Inst., 76(1), 139–158.
Herzog  M (1989), Die abgeminderte Tragfahigkeit hyperbolischer Kühltürme mit geometrischeg Imperfektionen, Bautechnik, 66(11), 391–394.
Antonov EN (1982), Geometrically non-linear behavior of a ribbed cooling tower shell, Statika i dinamika slozh. stroit. konstruktsiy, L., 78–85 (in Russian).
Venkatesh  A and Rao  KP (1985), Analysis of laminated shells of revolution with laminated stiffeners using a doubly curved quadrilateral finite element, Comput. Struct., 20(4), 669–682.
Krätzig WB and Zahlten W. (1989), The application of plastic-fracturing theory to the finite element analysis of general reinforced shells, Trans 10th Int Conf Struct. Mech React Technol, Anaheim CA Vol B Los Angeles, 311–322.
Krätzig WB, Gruber K, and Zahlten W. (1991), Computer collapse simulation and crack evolution of large natural draught cooling towers under heavy winds, Spat Struct Turn Millennium: Proc IASS Symp, Copenhagen, Sept., Vol 3, Copenhagen, 43–50.
Nemirovskiy  YV and Shulgin  AV (1993), Stress state and initial destruction of inhomogeneously reinforced shells in the form of one-sheet hyperboloid, Izv. vuzov. Stroitelstvo, 11–12, 22–27 (in Russian).
Alexandrov  PV and Nemirovskiy  YV (1991), A stress state of a one-sheet hyperboloidal shell of revolution with inhomogeneous reinforcing, Izv. vuzov, Stroitelstvo i arhit., 10, 27–32 (in Russian).
Brajannisz  T (1970), Egyköpenyü forgasi hiperboloibol kivagott szektorhej szamitasa a hajlitases a membranelmelet alapjan, Epites-epiteszettud, 2(1–2), 29–67 (in Hungarian).
Dragulev  PP (1971), A dismembering of shell theory equations for one-sheet hyperboloid of revolution, Tr. LPI, 318, 66–74.
Heyde  K and Boslau  C (1989), Berechnung und Konstruktion von Einzellasteintragungen in eine Kühlturmschalen, Bauplan.-Bautechn., 43(2), 78–82.
Bielak  S and Duda  A (1986), Roswiazanie hiperboloidalnej chlodni kominowej pracujacej w zgieciowym stanie naprezenia, uwzglednieniem przeczywstych podrarcia, Zesz. nauk. WSI Opolu. Bucl., 22, 23–38 (in Polish).
Dumitrescu  JA and Billington  DP (1984), Concentrated edge loads on hyperboloidal shells, J. Struct. Eng., 110(1), 75–89.
Elms DG, Billington DO, and Mark R (1965), Stresses in hyperbolic cooling towers under edge loading, J. Eng. Mech. Div., (8).
Dumitrescu JA and Billington DP (1980), Shell foundation interaction for hyperbolic cooling towers, Report 80-SM-28, Princeton Univ, Princeton, NJ.
Dragulev P and Panayotov L (1972), Stress-strain state of a hyperboloidal shell of revolution under centripetal force, Godishn. Vissh. mashin. elektrotehn. in-t, Varna, Vol 8 , 159–168 (in Bulgarian).
Pastushihin  VN (1959), On theory of negative Gaussian curvature shells of revolution subjected to axisymmetrical heating, Nauchn. dokl. visshey shkoli, 1, 81–89 (in Russian).
Lovshin SS (1978), The investigation of claydite-concrete hyperboloidal shells of revolution under irregular temperature actions, Issledovanie elementov stroit. konstruktsiy, M: MADI, 158 , 69–75 (in Russian).
Lovshin SS (1978), Modeling the hyperbolic shells of revolution under irregular temperature and moisture actions, Issled. elementov stroit. konstruktsiy, M: MADI, 158 , 64–68 (in Russian).
Stoffregen U (1984), Long time measurements of the effect of water and temperature on cooling tower, Proc of 2nd Int Symp Natural Draught Colling Towers. Ruhr-Universitet Bohum, Germany, 487–500.
Sanal  Z (1987), Einfluß von temperaturbedingten Rissen auf Schwingungsverhalten von Kühlturmschalen, Beton und Stahlbetonbau, 82(3), 73–77.
Larrabee  RD, Billington  DP, and Abel  JF (1974), Thermal loading of thin shell concrete cooling tower, J. Struct. Div. ASCE, 100(12), 2367–2383.
Blocki J (1987), Stress states in a cooling tower caused by thermal field, Report Dan Cent Appl Math and Mech, No 348, 1–33.
Sharma  Sushil K and Boresi  Arthur P (1980), Thermal and gravity stresses in hyperboloidal cooling towers, Nucl. Eng. Des., 61(1), 33–45.
Lovshin SS (1980), A stress-strain state investigation of claydite-reinforced concrete hyperboloidal shells of revolution subjected to irregular moisture actions, Issled, elementov stroit, konstruktsiy, M: MADI, 111–122 (in Russian).
Nelson  R (1981), Stresses in shell structures, J. Sound Vib., 79(3), 397–414.
Zhao  Y and Jiang  J (1994), Dynamic analysis of hyperbolic cooling towers, Earthquake Eng. Eng. Vibration, 14(1), 61–71 (in Chinese).
Belikov  GI and Tarasov  AA (1982), Free vibration optimization of geometric parameters of cooling tower shells, Stroit. mech. i raschet sooruzheniy, 4, 12–16 (in Russian).
Kolkunov NV and Zveryaev EM (1985), Cooling tower shell dynamics, Teoriya i eksper issled prostranst konstruktsiy Primenenie obolochek v ing soor.: Int Congress, Moscow, 146–155 (in Russian).
Lyahina LI (1979), Natural frequencies and modes of a hyperbolidal cooling tower shell with local axisymmetrical imperfections, MKE v raschotah zhelezob plastin i obol, Frunze: FPI, 118–126 (in Russian).
Loo  W and Gao  S-q (1987), The effect of local geometric imperfections of rational shell on its natural frequencies and modes, Appl. Math. Mech., 8(11), 1013–1018.
Sen  SK and Gould  PL (1974), Free vibration of shells of revolution using FEM, L. Eng. Mech. Div. Proc ASCE, 100(2), 283–303.
Kustovskiy VD (1983), A finite element solution of free vibration problems for thin elastic shells of revolution bounded by the parallels, Nadezhnost sudov. mashin, Nikolaev: NKI, 54–65 (in Russian).
Kosawada  T, Suzuki  K, and Takahashi  S (1986), Axisymmetric free vibrations of shells of revolution having general meridional curvature, Trans. Jpn. Soc. Mech. Eng., Ser. C, C52(473), 209–215 (in Japanese).
Andronov  VI, Boltuhov  AA, and Povolotskiy  BN (1966), Natural vibrations of cooling tower shells, Stroit. meh. i raschet soor., 4, 16–19 (in Russian).
Tupikin  AI (1975), A free vibration investigation of a cooling tower shell with the help of a finite element method, Tr. TsNIISKa, 43, 28–46 (in Russian).
Abramek W (1989), Drgania wlasne hiperboloidalnej chlodni kominowej, Inz. i bud., 46 (9), (in Polish).
Gould  PL and Basu  PK (1978), Dynamische untersuchung von naturzugkühltürmen, Konstr. Ingenieurbau. Ber., 31, 82–83.
Hashish  MG and Salman  HAS (1978), Free vibration of hyperbolic cooling towers, J. Eng. Mech. Div., Proc. ASCE, 97(2), 253–267.
Shipilov AG (1981), Dynamic response of cooling tower shells, Stroit. meh. soor., 5 , L:LISI,136–146 (in Russian).
Maslennikov  AM (1985), An analysis of towers caused by a pulsed load, Stroit. meh. i raschet sooruzh., 5, 36–39 (in Russian).
Sanal  Z (1988), Dynamisches Antwortverhalten von Kühlturmschalen unter natürlichen instationären Windeinwirkungen, Beton und Stahlbetonbau, 83(4), 112–115.
Choi  C-K and Noh  H-C (1999), Simulation of wind process by spectral representation method and application to cooling tower shell, Wind Struct., 2(2), 105–117.
Krätzig  W, Sanal  Z, and Wittek  U (1984), Zum Einfluß oberer randaussteifungen auf das dynamische verhalten von kühlturmschalen, Beton-und Stahlbetonbau, 79(3), 74–80.
Boltuhov  AA (1963), Cooling tower shell vibrations, Stroit. proekt. prom. predpriyatiy, 2, 21–27 (in Russian).
Isaev VS (1990), On the determination of dynamic displacements of a cooling tower shell caused by an impulse placed at the different points of the cooling tower shell, L: LISI, Dep. v VINITI 19.7.90, No 4061–B90, 11p (in Russian).
Mang  HA and Gedolin  L (1978), Cooling tower analysis by a finite element technique based on a modified hamilton’s principle, Meccanica, 13(4), 208–224.
Zabolotnaya  VA, Tsaritsina  IV, and Shulman  SG (1977), An analysis of reinforced concrete cooling tower shells under seismic loading, Izv. VNII gidrotehn., 118, 84–90 (in Russian).
Zabolotnaya  VA and Tsaritsina  IV (1980), An analysis of a cooling tower shell subjected to seismic action described with the help of the analog accelerogram, Izv. VNII gidrotehn., 136, 23–26 (in Russian).
Gran  CS and Yang  TY (1980), Refined analysis of the seismic responce of column-supported cooling tower, Comput. Struct., 11(3), 225–231.
Gran  CS and Yang  TY (1978), NASTRAN and SAP IY applications on the seismic response of column-supported cooling towers, Comput. Struct., 8(6), 761–768.
Kratzig WB and Mescouris K (1979), Towards safe and economic seismic design of cooling towers of extreme height, Trans 5th Int Conf Struct Mech React Technol, Berlin, K (b), Amsterdam, K8.2/1–K8.2/9.
Kondo  H (1977), Dynamic response of hyperboloidal cooling tower caused by seismic waves, Trans. Jpn. Soc. Mech. Eng., 43(375), 4060–4067 (in Japanese).
Kondo  H (1978), Vibration analysis of hyperbolic cooling towers due to earthquake excitations, Bull. JSME, 21(157), 1095–1102.
Yang  TY and Kapania  RK (1983), Shell elements for cooling tower analysis, J. Eng. Mech., 109(5), 1270–1289.
Lee  B-J and Gould  PL (1984), Complex response analysis of shells of revolution including uniform base translation and rocking, Earthquake Eng. Struct. Dyn., 12(4), 507–519.
Kato S, Kimura K, and Suzuki Y (1991), Effect of the property of supporting columns on the seismic responce of cooling towers with new type of the supporting columns, Spat Struct Turn Millennium: Proc IASS Symp, 3 , Copenhagen, 311–318.
Swaminathan  KV and Venkatesha  CR (1971), Discussion on the paper: “Earthquake design of cooling towers” by SH Abu Sitta and G Davenport, J. Struct. Div. ASCE, 97(7), 2023–2024.
Cole PP, Abel JF, and Billington DP (1973), Maximum seismic response of cooling towers, Report 73-SM-1, Princeton Univ, Princeton NJ.
Nigmatulin RI and Kiyashko NV (2001), A cooling tower model with wind-guide shield, Shells in Architecture and Strength Analysis of Thin-Walled Civil Engineering and Machine-Building Constructions of Complex Form: Int Conf, Moscow, 56–57.
Yakupov NM, Galyaviev ShSh, and Nurullin RG (2001), An elasto-plastic analysis of cooling tower shell and a variant of strengthening of a cooling tower, Shells in Architecture and Strength Analysis of Thin-Walled Civil Engineering and Machine-Building Constructions of Complex Form: Proc of Int Conf, Moscow, 462–467.


Grahic Jump Location
General view of Volgograd Museum-panorama “Stalingrad battle (1942–1943)” (Volgograd, Russia)
Grahic Jump Location
The planetarium in Saint Louis (USA)
Grahic Jump Location
Covered market in Sault (France)
Grahic Jump Location
The central poured-in-place reinforced concrete tower of the church in the form of one-sheet hyperbolic surface of revolution (Algiers, Algeria)
Grahic Jump Location
Graphic picture of one shell element of the shell roof of the factory building in Hungary
Grahic Jump Location
Cooling tower Doel III with a height of 167.5 m (Belgium)
Grahic Jump Location
Cooling tower Mississippi I with a height of 158.9 m (USA)
Grahic Jump Location
General dimensions of the cooling towers Doel III, Mississippi I, and Isar II
Grahic Jump Location
General view of the cooling towers at Ferrybridge after gale force wind
Grahic Jump Location
A counterflow metal-sheeting cooling tower with a rigid space steel lattice framework
Grahic Jump Location
Cable cooling towers with a central pylon: I-a cooling tower with diagonal and circular cables; II-a cooling tower with meridional and diagonal cables; III-a cooling tower with prestressed cables
Grahic Jump Location
The types of reinforced concrete cooling towers united in one common group: a ) by pairs; b ) by the threes; c ) by the fours; d ) in the form of halo
Grahic Jump Location
A counterflow cooling tower with a reinforced concrete tower shell
Grahic Jump Location
Assembling of supporting round-section columns of the inclined colonnade for Zaporozhskaya nuclear power plant, the Ukraine
Grahic Jump Location
Supporting colonnade containing elements of a rectangular cross-section for the Novo-Angrensk State power plant (Uzbekistan)
Grahic Jump Location
A jig for the assembly of poles of the inclined colonnade
Grahic Jump Location
Free-edge buckling of a hyperbolic model subjected to wind pressure 79
Grahic Jump Location
The stages of making a concrete model of a cooling tower: a ) wooden falsework of a model; b ) vertical and circular steel reinforcing wire and dividing strips; c ) partially concreted shell
Grahic Jump Location
The lowest buckling modes for unstiffened and triple ring-stiffened cooling tower shell
Grahic Jump Location
A one-sheet hyperbolic surface of revolution
Grahic Jump Location
The continuing building of a complex of cooling towers with a height of 150 m (Rovno nuclear power plant, the Ukraine)
Grahic Jump Location
The cooling towers of Novo-Angrensk State power plant (Uzbekistan)
Grahic Jump Location
Concreting of a support ring of a cooling tower with the help of a concrete-distributing complex (the Rovno nuclear power plant, the Ukraine)
Grahic Jump Location
Geometrical surface of a high chimney with intersecting (a ) and nonintersecting (b ) reinforcing wires
Grahic Jump Location
The erection of a reinforced concrete shell of a cooling tower with the application of slip forms
Grahic Jump Location
Self-lifting scaffold of traveling forms
Grahic Jump Location
A method of concreting with the application of the slip forms
Grahic Jump Location
The application of the slip forms in the time of erection of the Nono-Angrensk State power plant (Uzbekistan)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In