Ray Method for Solving Dynamic Problems Connected With Propagation of Wave Surfaces of Strong and Weak Discontinuities

[+] Author and Article Information
Yuriy A. Rossikhin, Marina V. Shitikova

Department of Theoretical Mechanics, Voronezh State Academy of Construction and Architecture, ul 20-letija Oktjabrja 84, Voronezh 394006, Russia

Appl. Mech. Rev 48(1), 1-39 (Jan 01, 1995) (39 pages) doi:10.1115/1.3005096 History: Online April 29, 2009


The aim of the article is to review the literature devoted to the solution of wave dynamics problems resulting in the propagation of nonstationary surfaces (volume waves) or lines (surface waves) of strong and weak discontinuities. In so doing one-term and multiple-term ray expansions, which are truncated power series with variable coefficients, are used. Jumps in all kinds of order of the time-derivatives of the functions to be desired serve as the coefficients. With their help the solutions are constructed behind the wave fronts up to the boundary of the wave motion domain. If the domains of the wave motion existence are extended, then the truncated ray series approximating the solution are not always uniformly valid over these domains. In this article, the methods for regularization of the truncated ray series are discussed, and in particular a new method which has been called by the authors as the method of “forward-area regularization”. These methods have gained recently wide application to solve the boundary-value problems connected with the wave propagation in bars, beams, plates, shells, 3D bodies, as well as with the dynamic contact interaction. In so doing, linear and nonlinear elastic, isotropic and anisotropic, thermoelastic, elastoplastic, and elastoviscoplastic media are used.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In