Experimental Investigation of a Turbulent Jet Produced by an Oscillating Surface Actuator

[+] Author and Article Information
R. D. James, J. W. Jacobs

Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson AZ 85721

A. Glezer

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA 30332

Appl. Mech. Rev 47(6S), S127-S131 (Jun 01, 1994) doi:10.1115/1.3124388 History: Online April 29, 2009


A round turbulent water jet produced normal to, and at the center of a resonantly driven piezoceramic actuator is investigated experimentally. The flow is produced without mass injection and is comprised entirely of radially entrained fluid. The jet is created by the formation and disappearance of cavitation bubbles during each oscillation cycle near the actuator surface. It appears that this process produces a series of vortex puffs from radially entrained fluid which coalesce to form the jet. Although the jet results from strong time periodic excitation, its time averaged behavior in the far field is similar to that of a classical turbulent round jet in that the increase its width and decrease in the inverse of its centerline velocity are both linear functions of the distance from the actuator. The time periodic features of the jet are observed throughout the flow field and are superimposed on the mean flow. The transient characteristics of the jet have also been investigated and indicate that it can be manipulated on relatively small time scales suggesting that it may be utilized for control of wall bounded shear flows.

Copyright © 1994 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In