Stability of Linear Mechanical Systems With Holonomic Constraints

[+] Author and Article Information
Peter C. Müller

Safety Control Engineering, University of Wuppertal, D-42097 Wuppertal, Germany

Appl. Mech. Rev 46(11S), S160-S164 (Nov 01, 1993) doi:10.1115/1.3122633 History: Online April 29, 2009


Singular systems (descriptor systems, differential-algebraic equations) are a recent topic of research in numerical mathematics, mechanics and control theory as well. But compared with common methods available for investigating regular systems many problems still have to be solved making also available a complete set of tools to analyze, to design and to simulate singular systems. In this contribution the aspect of stability is considered. Some new results for linear singular systems are presented based on a generalized Lyapunov matrix equation. Particularly, for mechanical systems with holonomic constraints the well-known stability theorem of Thomson and Tait is generalized.

Copyright © 1993 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In