Stability and Bifurcations of Nonlinear Multibody Systems

[+] Author and Article Information
Edwin J. Kreuzer

Ocean Engineering Section II, Technical University Hamburg-Harburg, D-21071 Hamburg, Germany

Appl. Mech. Rev 46(11S), S156-S159 (Nov 01, 1993) doi:10.1115/1.3122631 History: Online April 29, 2009


Many technical systems are adequately described only by means of nonlinear mathematical models. Multibody systems became the most important mechanical models for analyzing engineering dynamics problems. The long-term or steady-state behavior of such systems can have a periodic, quasi-periodic, or chaotic character. Changes of the qualitative behavior are characterized by local and global bifurcations. This paper deals with stability problems in multibody system dynamics and explains different bifurcation phenomena as well as methods for analyzing them. Results from a simple oscillator prove the applicability of the methods.

Copyright © 1993 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In