The Structure of Shear Bands in Idealized Granular Materials

[+] Author and Article Information
J. P. Bardet, J. Proubet

Civil Engineering Department, University of Southern California, Los Angeles, CA 90089-2531

Appl. Mech. Rev 45(3S), S118-S122 (Mar 01, 1992) doi:10.1115/1.3121381 History: Online April 30, 2009


The structure of shear bands in granular materials was investigated by numerically simulating an idealized assembly of two-dimensional particles. Flexible stress-controlled boundaries were used instead of periodic boundaries to avoid constraining the motion of particles within the tested specimen. The particle displacement, particle rotations and rotations of the particle neighborhoods (macro-rotation) were examined within the shear band. The shear band width was found to decrease with axial strain from 18 and 15 times the average particle radius. The particle rotations and macro-rotations were concentrated inside the shear bands. The numerical simulations suggest that the particle rotations are induced by macro-rotations, and support the use of the micropolar theory for examining instable phenomena within granular materials.

Copyright © 1992 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In