Abstract

Unlike micromechanics failure models that have a well-defined crack path, phase-field fracture models are capable of predicting the crack path in arbitrary geometries and dimensions by utilizing a diffuse representation of cracks. However, such models rely on the calibration of a fracture energy (Gc) and a regularization length-scale (lc) parameter, which do not have a strong micromechanical basis. Here, we construct the equivalent crack-tip cohesive zone laws representing a phase-field fracture model, to elucidate the effects of Gc and lc on the fracture resistance and crack growth mechanics under mode I K-field loading. Our results show that the cohesive zone law scales with increasing Gc while maintaining the same functional form. In contrast, increasing lc broadens the process zone and results in a flattened traction-separation profile with a decreased but sustained peak cohesive traction over longer separation distances. While Gc quantitatively captures the fracture initiation toughness, increasing Gc coupled with decreasing lc contributes to a rising fracture resistance curve and a higher steady-state toughness—both these effects cumulate in an evolving cohesive zone law with crack progression. We discuss the relationship between these phase-field parameters and process zone characteristics in the material.

References

1.
Foehring
,
D.
,
Chew
,
H. B.
, and
Lambros
,
J.
,
2018
, “
Characterizing the Tensile Behavior of Additively Manufactured Ti-6Al-4V Using Multiscale Digital Image Correlation
,”
Mater. Sci. Eng. A
,
724
, pp.
536
546
.
2.
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Additive Manufacturing of Ti6Al4V Alloy: A Review
,”
Mater. Des.
,
164
, p.
107552
.
3.
VanSickle
,
R.
,
Foehring
,
D.
,
Chew
,
H. B.
, and
Lambros
,
J.
,
2020
, “
Microstructure Effects on Fatigue Crack Growth in Additively Manufactured Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
795
, p.
139993
.
4.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.
5.
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2000
, “
Mechanics of Materials: Top-Down Approaches to Fracture
,”
Acta Mater.
,
48
(
1
), pp.
125
135
.
6.
Chew
,
H. B.
,
Guo
,
T. F.
, and
Cheng
,
L.
,
2005
, “
Vapor Pressure and Residual Stress Effects on Failure of an Adhesive Film
,”
Int. J. Solids Struct.
,
42
(
16
), pp.
4795
4810
.
7.
Cui
,
Y.
,
Gao
,
Y. F.
, and
Chew
,
H. B.
,
2020
, “
Two-Scale Porosity Effects on Cohesive Crack Growth in a Ductile Media
,”
Int. J. Solids Struct.
,
200–201
, pp.
188
197
.
8.
Muro-Barrios
,
R.
,
Cui
,
Y.
,
Lambros
,
J.
, and
Chew
,
H. B.
,
2022
, “
Dual-Scale Porosity Effects on Crack Growth in Additively Manufactured Metals: 3D Ductile Fracture Models
,”
J. Mech. Phys. Solids
,
159
, p.
104727
.
9.
Barenblatt
,
G. I.
,
1962
, “The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,”
Advances in Applied Mechanics
,
H. L.
Dryden
,
T.
von Kármán
,
G.
Kuerti
,
F. H.
van den Dungen
, and
L.
Howarth
, eds.,
Elsevier
,
New York
, Vol.
7
, pp.
55
129
.
10.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
11.
Xia
,
L.
, and
Shih
,
C. F.
,
1995
, “
Ductile Crack Growth-I. A Numerical Study Using Computational Cells With Microstructurally-Based Length Scales
,”
J. Mech. Phys. Solids
,
43
(
2
), pp.
233
259
.
12.
Linder
,
C.
, and
Armero
,
F.
,
2007
, “
Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Solids
,”
Int. J. Numer. Methods Eng.
,
72
(
12
), pp.
1391
1433
.
13.
Chen
,
C. R.
,
Kolednik
,
O.
,
Scheider
,
I.
,
Siegmund
,
T.
,
Tatschl
,
A.
, and
Fischer
,
F. D.
,
2003
, “
On the Determination of the Cohesive Zone Parameters for the Modeling of Micro-Ductile Crack Growth in Thick Specimens
,”
Int. J. Fract.
,
120
(
3
), pp.
517
536
.
14.
Gustafson
,
P. A.
, and
Waas
,
A. M.
,
2009
, “
The Influence of Adhesive Constitutive Parameters in Cohesive Zone Finite Element Models of Adhesively Bonded Joints
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
2201
2215
.
15.
Desai
,
C. K.
,
Basu
,
S.
, and
Parameswaran
,
V.
,
2016
, “
Determination of Traction Separation Law for Interfacial Failure in Adhesive Joints at Different Loading Rates
,”
J. Adhes.
,
92
(
10
), pp.
819
839
.
16.
Jemblie
,
L.
,
Olden
,
V.
, and
Akselsen
,
O. M.
,
2017
, “
A Review of Cohesive Zone Modelling as an Approach for Numerically Assessing Hydrogen Embrittlement of Steel Structures
,”
Philos. Trans. R. Soc. A
,
375
(
2098
), p.
20160411
.
17.
Lélias
,
G.
,
Paroissien
,
E.
,
Lachaud
,
F.
, and
Morlier
,
J.
,
2019
, “
Experimental Characterization of Cohesive Zone Models for Thin Adhesive Layers Loaded in Mode I, Mode II, and Mixed-Mode I/II by the Use of a Direct Method
,”
Int. J. Solids Struct.
,
158
, pp.
90
115
.
18.
Peerlings
,
R. H. J.
,
Borst
,
R.
,
Brekelmans
,
W. A. M.
,
Vree
,
J. H. P.
, and
Spee
,
I.
,
1996
, “
Some Observations on Localization in Non-Local and Gradient Damage Models
,”
Eur. J. Mech. A Solids
,
15
(
6
), pp.
937
953
.
19.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
1998
, “
Gradient-Enhanced Damage Modelling of Concrete Fracture
,”
Mech. Cohesive-Frict. Mater.
,
3
(
4
), pp.
323
342
.
20.
Comi
,
C.
,
1999
, “
Computational Modelling of Gradient-Enhanced Damage in Quasi-Brittle Materials
,”
Mech. Cohesive Frict. Mater.
,
4
(
1
), pp.
17
36
.
21.
Lorentz
,
E.
, and
Andrieux
,
S.
,
2003
, “
Analysis of Non-Local Models Through Energetic Formulations
,”
Int. J. Solids Struct.
,
40
(
12
), pp.
2905
2936
.
22.
Benallal
,
A.
, and
Marigo
,
J.-J.
,
2006
, “
Bifurcation and Stability Issues in Gradient Theories With Softening
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S283
S295
.
23.
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Pham
,
K.
,
2016
, “
An Overview of the Modelling of Fracture by Gradient Damage Models
,”
Meccanica
,
51
(
12
), pp.
3107
3128
.
24.
Martínez-Pañeda
,
E.
,
Golahmar
,
A.
, and
Niordson
,
C. F.
,
2018
, “
A Phase Field Formulation for Hydrogen Assisted Cracking
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
742
761
.
25.
Kristensen
,
P. K.
,
Niordson
,
C. F.
, and
Martínez-Pañeda
,
E.
,
2020
, “
Applications of Phase Field Fracture in Modelling Hydrogen Assisted Failures
,”
Theor. Appl. Fract. Mech.
,
110
, p.
102837
.
26.
Teichtmeister
,
S.
,
Kienle
,
D.
,
Aldakheel
,
F.
, and
Keip
,
M.-A.
,
2017
, “
Phase Field Modeling of Fracture in Anisotropic Brittle Solids
,”
Int. J. Non-Linear Mech.
,
97
, pp.
1
21
.
27.
Carollo
,
V.
,
Guillén-Hernández
,
T.
,
Reinoso
,
J.
, and
Paggi
,
M.
,
2018
, “
Recent Advancements on the Phase Field Approach to Brittle Fracture for Heterogeneous Materials and Structures
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), p.
8
.
28.
Li
,
S.
,
Tian
,
L.
, and
Cui
,
X.
,
2019
, “
Phase Field Crack Model With Diffuse Description for Fracture Problem and Implementation in Engineering Applications
,”
Adv. Eng. Softw.
,
129
, pp.
44
56
.
29.
Wu
,
J.
,
2017
, “
A Unified Phase-Field Theory for the Mechanics of Damage and Quasi-Brittle Failure
,”
J. Mech. Phys. Solids
,
103
, pp.
72
99
.
30.
Yin
,
B.
,
Storm
,
J.
, and
Kaliske
,
M.
,
2021
, “
Viscoelastic Phase-Field Fracture Using the Framework of Representative Crack Elements
,”
Int. J. Fract.
31.
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Scott
,
M. A.
,
Hughes
,
T. J. R.
, and
Landis
,
C. M.
,
2012
, “
A Phase-Field Description of Dynamic Brittle Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
217–220
, pp.
77
95
.
32.
Liu
,
G.
,
Li
,
Q.
,
Msekh
,
M. A.
, and
Zuo
,
Z.
,
2016
, “
Abaqus Implementation of Monolithic and Staggered Schemes for Quasi-Static and Dynamic Fracture Phase-Field Model
,”
Comput. Mater. Sci.
,
121
, pp.
35
47
.
33.
Braides
,
A.
,
1998
, “A General Approach to Approximation,”
Approximation of Free-Discontinuity Problems
,
A.
Braides
, ed.,
Springer
,
New York
, pp.
87
102
.
34.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
.
35.
Borden
,
M. J.
,
Hughes
,
T. J. R.
,
Landis
,
C. M.
, and
Verhoosel
,
C. V.
,
2014
, “
A Higher-Order Phase-Field Model for Brittle Fracture: Formulation and Analysis Within the Isogeometric Analysis Framework
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
100
118
.
36.
Borden
,
M. J.
,
Hughes
,
T. J. R.
,
Landis
,
C. M.
,
Anvari
,
A.
, and
Lee
,
I. J.
,
2016
, “
A Phase-Field Formulation for Fracture in Ductile Materials: Finite Deformation Balance Law Derivation, Plastic Degradation, and Stress Triaxiality Effects
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
130
166
.
37.
Pham
,
K.
,
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
Gradient Damage Models and Their Use to Approximate Brittle Fracture
,”
Int. J. Damage Mech.
,
20
(
4
), pp.
618
652
.
38.
Wu
,
C.
,
Fang
,
J.
,
Zhang
,
Z.
,
Entezari
,
A.
,
Sun
,
G.
,
Swain
,
M. V.
, and
Li
,
Q.
,
2020
, “
Fracture Modeling of Brittle Biomaterials by the Phase-Field Method
,”
Eng. Fract. Mech.
,
224
, p.
106752
.
39.
Bourdin
,
B.
,
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Sicsic
,
P.
,
2014
, “
Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks
,”
Phys. Rev. Lett.
,
112
(
1
), p.
014301
.
40.
Mesgarnejad
,
A.
,
Bourdin
,
B.
, and
Khonsari
,
M. M.
,
2015
, “
Validation Simulations for the Variational Approach to Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
420
437
.
41.
Nguyen
,
T. T.
,
Yvonnet
,
J.
,
Bornert
,
M.
,
Chateau
,
C.
,
Sab
,
K.
,
Romani
,
R.
, and
Le Roy
,
R.
,
2016
, “
On the Choice of Parameters in the Phase Field Method for Simulating Crack Initiation With Experimental Validation
,”
Int. J. Fract.
,
197
(
2
), pp.
213
226
.
42.
Tanné
,
E.
,
Li
,
T.
,
Bourdin
,
B.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2018
, “
Crack Nucleation in Variational Phase-Field Models of Brittle Fracture
,”
J. Mech. Phys. Solids
,
110
, pp.
80
99
.
43.
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
1998
, “
Revisiting Brittle Fracture as an Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
.
44.
Chew
,
H. B.
,
Hong
,
S.
, and
Kim
,
K.-S.
,
2009
, “
Cohesive Zone Laws for Void Growth—II. Numerical Field Projection of Elasto-Plastic Fracture Processes With Vapor Pressure
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1374
1390
.
45.
Hong
,
S.
,
Chew
,
H. B.
, and
Kim
,
K.-S.
,
2009
, “
Cohesive-Zone Laws for Void Growth—I. Experimental Field Projection of Crack-Tip Crazing in Glassy Polymers
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1357
1373
.
46.
Kim
,
H.-G.
,
Chew
,
H. B.
, and
Kim
,
K.-S.
,
2012
, “
Inverse Extraction of Cohesive Zone Laws by Field Projection Method Using Numerical Auxiliary Fields
,”
Int. J. Numer. Methods Eng.
,
91
(
5
), pp.
516
530
.
47.
Chew
,
H. B.
,
2013
, “
Inverse Extraction of Interfacial Tractions From Elastic and Elasto-Plastic Far-Fields by Nonlinear Field Projection
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
131
144
.
48.
Chew
,
H. B.
,
2014
, “
Cohesive Zone Laws for Fatigue Crack Growth: Numerical Field Projection of the Micromechanical Damage Process in an Elasto-Plastic Medium
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1410
1420
.
49.
Tran
,
H.
,
Gao
,
Y. F.
, and
Chew
,
H. B.
,
2022
, “
An Inverse Method to Reconstruct Crack-Tip Cohesive Zone Laws for Fatigue by Numerical Field Projection
,”
Int. J. Solids Struct.
,
239–240
, p.
111435
.
50.
Negri
,
M.
, and
Paolini
,
M.
,
2001
, “
Numerical Minimization of the Mumford-Shah Functional
,”
Calcolo
,
38
(
2
), pp.
67
84
.
51.
Fraternali
,
F.
,
2007
, “
Free Discontinuity Finite Element Models in Two-Dimensions for In-Plane Crack Problems
,”
Theor. Appl. Fract. Mech.
,
47
(
3
), pp.
274
282
.
52.
Schmidt
,
B.
,
Fraternali
,
F.
, and
Ortiz
,
M.
,
2009
, “
Eigenfracture: An Eigendeformation Approach to Variational Fracture
,”
Multiscale Model. Simul.
,
7
(
3
), pp.
1237
1266
.
53.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2000
, “
Implementation of an Adaptive Finite-Element Approximation of the Mumford-Shah Functional
,”
Numer. Math.
,
85
(
4
), pp.
609
646
.
54.
Sargado
,
J. M.
,
Keilegavlen
,
E.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2018
, “
High-Accuracy Phase-Field Models for Brittle Fracture Based on a New Family of Degradation Functions
,”
J. Mech. Phys. Solids
,
111
, pp.
458
489
.
55.
Khodadadian
,
A.
,
Noii
,
N.
,
Parvizi
,
M.
,
Abbaszadeh
,
M.
,
Wick
,
T.
, and
Heitzinger
,
C.
,
2020
, “
A Bayesian Estimation Method for Variational Phase-Field Fracture Problems
,”
Comput. Mech.
,
66
(
4
), pp.
827
849
.
56.
Miehe
,
C.
,
Teichtmeister
,
S.
, and
Aldakheel
,
F.
,
2016
, “
Phase-Field Modelling of Ductile Fracture: A Variational Gradient-Extended Plasticity-Damage Theory and Its Micromorphic Regularization
,”
Philos. Trans. R. Soc. A
,
374
(
2066
), p.
20150170
.
57.
Dittmann
,
M.
,
Aldakheel
,
F.
,
Schulte
,
J.
,
Wriggers
,
P.
, and
Hesch
,
C.
,
2018
, “
Variational Phase-Field Formulation of Non-Linear Ductile Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
71
94
.
58.
Zhuang
,
X.
,
Zhou
,
S.
,
Sheng
,
M.
, and
Li
,
G.
,
2020
, “
On the Hydraulic Fracturing in Naturally-Layered Porous Media Using the Phase Field Method
,”
Eng. Geol.
,
266
, p.
105306
.
59.
de Borst
,
R.
, and
Verhoosel
,
C. V.
,
2016
, “
Gradient Damage Vs Phase-Field Approaches for Fracture: Similarities and Differences
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
78
94
.
60.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
. <131::AID-NME726>3.0.CO;2-J
61.
García
,
I. G.
,
Paggi
,
M.
, and
Mantič
,
V.
,
2014
, “
Fiber-Size Effects on the Onset of Fiber–Matrix Debonding Under Transverse Tension: A Comparison Between Cohesive Zone and Finite Fracture Mechanics Models
,”
Eng. Fract. Mech.
,
115
, pp.
96
110
.
62.
Miehe
,
C.
,
Hofacker
,
M.
,
Schänzel
,
L.-M.
, and
Aldakheel
,
F.
,
2015
, “
Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic–Plastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
486
522
.
63.
Miehe
,
C.
,
Schänzel
,
L.-M.
, and
Ulmer
,
H.
,
2015
, “
Phase Field Modeling of Fracture in Multi-Physics Problems. Part I. Balance of Crack Surface and Failure Criteria for Brittle Crack Propagation in Thermo-Elastic Solids
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
449
485
.
64.
Chandra
,
N.
,
Li
,
H.
,
Shet
,
C.
, and
Ghonem
,
H.
,
2002
, “
Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2827
2855
.
65.
Dong
,
J.
,
Chen
,
M.
,
Jin
,
Y.
,
Hong
,
G.
,
Zaman
,
M.
, and
Li
,
Y.
,
2019
, “
Study on Micro-Scale Properties of Cohesive Zone in Shale
,”
Int. J. Solids Struct.
,
163
, pp.
178
193
.
66.
Chew
,
H. B.
,
Guo
,
T. F.
, and
Cheng
,
L.
,
2007
, “
Pressure-Sensitive Ductile Layers—I. Modeling the Growth of Extensive Damage
,”
Int. J. Solids Struct.
,
44
(
7
), pp.
2553
2570
.
67.
Chew
,
H. B.
,
Guo
,
T. F.
, &
Cheng
,
L.
,
2007
,
Pressure-Sensitive Ductile Layers—II. 3D Models of Extensive Damage
.
Int. J. Solids Struct.
,
44
(
16
),
5349
5368
.
You do not currently have access to this content.