Abstract

The demand for detecting minute mass in biology and chemistry promotes the research of high sensitivity and strong robustness mass sensor based on MEMS resonators in the past few decades. The nonlinear behaviors are introduced to improve sensitivity, frequency stability, resolution, etc. However, the bifurcation configuration will become sophisticated due to mechanical, electrostatic, and damping nonlinearities. In this paper, the nonlinear bifurcation behaviors in parametrically excited mode-localized resonators are theoretically analyzed and introduced to improve the robustness of mass sensors. The nonlinear dynamics is computed by using the method of multiple scales, which is validated by the harmonic balance method combined with the asymptotic numerical method. Then, the rules for controlling the two different bifurcation topologies are proposed. Notably, the sensitivity near the pitchfork bifurcation point can be enhanced by three orders of magnitude, and meanwhile, the sensor performs excellent antijamming ability to a specific damping range, which opens the way to avoid the problem of lack of robustness for bifurcation-based mass sensors.

References

1.
Fritz
,
J.
,
Baller
,
M. K.
,
Lang
,
H. P.
,
Rothuizen
,
H.
,
Vettiger
,
P.
,
Meyer
,
E.
,
Guentherodt
,
H. J.
,
Gerber
,
C.
, and
Gimzewski
,
J. K.
,
2000
, “
Translating Biomolecular Recognition Into Nanomechanics
,”
Science
,
288
(
5464
), pp.
316
318
.
2.
Arntz
,
Y.
,
Seelig
,
J. D.
,
Lang
,
H. P.
,
Zhang
,
J.
,
Hunziker
,
P.
,
Ramseyer
,
J. P.
,
Meyer
,
E.
,
Hegner
,
M.
, and
Gerber
,
C.
,
2002
, “
Label-Free Protein Assay Based on a Nanomechanical Cantilever Array
,”
Nanotechnology
,
14
(
1
), pp.
86
90
.
3.
Gimzewski
,
J. K.
,
Gerber
,
C.
,
Meyer
,
E.
, and
Schlittler
,
R. R.
,
1994
, “
Observation of a Chemical Reaction Using a Micromechanical Sensor
,”
Chem. Phys. Lett.
,
217
(
5–6
), pp.
589
594
.
4.
Hansen
,
K. M.
,
Ji
,
H. F.
,
Wu
,
G.
,
Datar
,
R.
,
Cote
,
R.
,
Majumdar
,
A.
, and
Thundat
,
T.
,
2001
, “
Cantilever-Based Optical Deflection Assay for Discrimination of DNA Single-Nucleotide Mismatches
,”
Anal. Chem.
,
73
(
7
), pp.
1567
1571
.
5.
Ilic
,
B.
,
Craighead
,
H. G.
,
Krylov
,
S.
,
Senaratne
,
W.
,
Ober
,
C.
, and
Neuzil
,
P.
,
2004
, “
Attogram Detection Using Nanoelectromechanical Oscillators
,”
J. Appl. Phys.
,
95
(
7
), pp.
3694
3703
.
6.
Chaste
,
J.
,
Eichler
,
A.
,
Moser
,
J.
,
Ceballos
,
G.
,
Rurali
,
R.
, and
Bachtold
,
A.
,
2012
, “
A Nanomechanical Mass Sensor With Yoctogram Resolution
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
301
304
.
7.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
,
2004
, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
,
95
(
5
), pp.
2682
2689
.
8.
Zhao
,
J.
,
Zhang
,
Y.
,
Gao
,
R.
, and
Liu
,
S.
,
2015
, “
A New Sensitivity Improving Approach for Mass Sensors Through Integrated Optimization of Both Cantilever Surface Profile and Cross-Section
,”
Sens. Actuators, B
,
206
(
3
), pp.
343
350
.
9.
Zhao
,
J.
,
Gao
,
R.
,
Liu
,
S.
, and
Huang
,
Y.
,
2014
, “
A New Sensitivity-Improving Method for Piezoelectric Resonance Mass Sensors Through Cantilever Cross-Section Modification
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1612
1621
.
10.
Zhao
,
J.
,
Wen
,
X.
,
Huang
,
Y.
, and
Liu
,
P.
,
2019
, “
Piezoelectric Circuitry Tailoring for Resonant Mass Sensors Providing Ultra-High Impedance Sensitivity
,”
Sens. Actuators, A
,
285
(
2
), pp.
275
282
.
11.
Xie
,
H.
,
Vitard
,
J.
,
Haliyo
,
S.
, and
Régnier
,
S.
,
2008
, “
Enhanced Sensitivity of Mass Detection Using the First Torsional Mode of Microcantilevers
,”
Meas. Sci. Technol.
,
19
(
5
), pp.
39
44
.
12.
Ding
,
H.
,
Le
,
X.
, and
Xie
,
J.
,
2017
, “
A MEMS Fishbone-Shaped Electrostatic Double-Ended Tuning Fork Resonator With Selectable Higher Modes
,”
J. Microelectromech. Syst.
,
26
(
4
), pp.
793
801
.
13.
Gao
,
R.
,
Huang
,
Y.
,
Wen
,
X.
,
Zhao
,
J.
, and
Liu
,
S.
,
2017
, “
Method to Further Improve Sensitivity for High-Order Vibration Mode Mass Sensors With Stepped Cantilevers
,”
IEEE Sens. J.
,
17
(
14
), pp.
4405
4411
.
14.
Spletzer
,
M.
,
Raman
,
A.
,
Wu
,
A. Q.
,
Xu
,
X.
, and
Reifenberger
,
R.
,
2006
, “
Ultrasensitive Mass Sensing Using Mode Localization in Coupled Microcantilevers
,”
Appl. Phys. Lett.
,
88
(
25
), p.
254102
.
15.
Wang
,
D. F.
,
Chatani
,
K.
,
Ikehara
,
T.
, and
Maeda
,
R.
,
2012
, “
Mode Localization Analysis and Characterization in a 5-Beam Array of Coupled Nearly Identical Micromechanical Resonators for Ultra-Sensitive Mass Detection and Analyte Identification
,”
Microsyst. Technol.
,
18
(
11
), pp.
1923
1929
.
16.
Zhao
,
C.
,
Wood
,
G. S.
,
Pu
,
S. H.
, and
Kraft
,
M.
,
2017
, “
A Mode-Localized MEMS Electrical Potential Sensor Based on Three Electrically Coupled Resonators
,”
J. Sens. Sens. Syst.
,
6
(
1
), pp.
1
8
.
17.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
,
2010
, “
Localization in Microresonator Arrays: Influence of Natural Frequency Tuning
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), pp.
125
133
.
18.
Ouakad
,
H. M.
,
Ilyas
,
S.
, and
Younis
,
M. I.
,
2020
, “
Investigating Mode Localization at Lower- and Higher-Order Modes in Mechanically Coupled MEMS Resonators
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
3
), p.
031001
.
19.
Sobreviela
,
G.
,
Zhao
,
C.
,
Pandit
,
M.
,
Do
,
C.
,
Du
,
S.
,
Zou
,
X.
, and
Seshia
,
A.
,
2017
, “
Parametric Noise Reduction in a High-Order Nonlinear MEMS Resonator Utilizing Its Bifurcation Points
,”
J. Microelectromech. Syst.
,
26
(
6
), pp.
1189
1195
.
20.
Rugar
,
D.
, and
Grütter
,
P.
,
1991
, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
21.
Balachandran
,
B.
,
Perkins
,
E.
, and
Fitzgerald
,
T.
,
2014
, “
Response Localization in Micro-Scale Oscillator Arrays: Influence of Cubic Coupling Nonlinearities
,”
Int. J. Dyn. Control.
,
3
(
2
), pp.
183
188
.
22.
Karabalin
,
R. B.
,
Lifshitz
,
R.
,
Cross
,
M. C.
,
Matheny
,
M. H.
,
Masmanidis
,
S. C.
, and
Roukes
,
M. L.
,
2011
, “
Signal Amplification by Sensitive Control of Bifurcation Topology
,”
Phys. Rev. Lett.
,
106
(
9
), p.
094102
.
23.
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2009
, “
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021010
.
24.
Kumar
,
V.
,
Boley
,
J. W.
,
Yang
,
Y.
,
Ekowaluyo
,
H.
,
Miller
,
J. K.
,
Chiu
,
G. T. C.
, and
Rhoads
,
J. F.
,
2011
, “
Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153510
.
25.
Kumar
,
V.
,
Yang
,
Y.
,
Boley
,
J. W.
,
Chiu
,
G. T. C.
, and
Rhoads
,
J. F.
,
2012
, “
Modeling, Analysis, and Experimental Validation of a Bifurcation-Based Microsensor
,”
J. Microelectromech. Syst.
,
21
(
3
), pp.
549
558
.
26.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound Vib.
,
333
(
8
), pp.
2241
2252
.
27.
Nguyen
,
V. N.
,
Baguet
,
S.
,
Lamarque
,
C. H.
, and
Dufour
,
R.
,
2014
, “
Bifurcation-Based Micro-/Nanoelectromechanical Mass Detection
,”
Nonlinear Dyn.
,
79
(
1–2
), pp.
647
662
.
28.
Meesala
,
V. C.
, and
Hajj
,
M. R.
,
2019
, “
Parameter Sensitivity of Cantilever Beam With Tip Mass to Parametric Excitation
,”
Nonlinear Dyn.
,
95
(
4
), pp.
3375
3384
.
29.
Lyu
,
M.
,
Zhao
,
J.
,
Kacem
,
N.
,
Liu
,
P.
,
Tang
,
B.
,
Xiong
,
Z.
,
Wang
,
H.
, and
Huang
,
Y.
,
2020
, “
Exploiting Nonlinearity to Enhance the Sensitivity of Mode-Localized Mass Sensor Based on Electrostatically Coupled MEMS Resonators
,”
Int. J. Non-Linear Mech.
,
121
, p.
103455
.
30.
Li
,
L.
,
Zhang
,
W.
,
Wang
,
J.
,
Hu
,
K.
,
Peng
,
B.
, and
Shao
,
M.
,
2020
, “
Bifurcation Behavior for Mass Detection in Nonlinear Electrostatically Coupled Resonators
,”
Int. J. Non-Linear Mech.
,
119
, p.
103366
.
31.
Alkaddour
,
M.
,
Ghommem
,
M.
, and
Najar
,
F.
,
2021
, “
Nonlinear Analysis and Effectiveness of Weakly Coupled Microbeams for Mass Sensing Applications
,”
Nonlinear Dyn.
,
104
(
1
), pp.
383
397
.
32.
Baguet
,
S.
,
Nguyen
,
V. N.
,
Grenat
,
C.
,
Lamarque
,
C. H.
, and
Dufour
,
R.
,
2018
, “
Nonlinear Dynamics of Micromechanical Resonator Arrays for Mass Sensing
,”
Nonlinear Dyn.
,
95
(
2
), pp.
1203
1220
.
33.
Shabana
,
A. A.
,
1991
,
Theory of Vibration
,
Springer-Verlag
,
Berlin
.
34.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
New York
.
35.
Kacem
,
N.
,
Baguet
,
S.
,
Hentz
,
S.
, and
Dufour
,
R.
,
2011
, “
Computational and Quasi-Analytical Models for Non-Linear Vibrations of Resonant MEMS and NEMS Sensors
,”
Int. J. Non-Linear Mech.
,
46
(
3
), pp.
532
542
.
36.
Souayeh
,
S.
,
Kacem
,
N.
,
Najar
,
F.
, and
Foltête
,
E.
,
2015
, “
Nonlinear Dynamics of Parametrically Excited Carbon Nanotubes for Mass Sensing Applications
,”
Proceedings of 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Crete Island, Greece
,
May 25–27
.
37.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
DeMartini
,
B. E.
, and
Zhang
,
W.
,
2006
, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
(
4–5
), pp.
797
829
.
38.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1981
,
Nonlinear Oscillations
,
Clarendon
,
Oxford
.
39.
Dufour
,
R.
, and
Berlioz
,
A.
,
1998
, “
Parametric Instability of a Beam Due to Axial Excitations and to Boundary Conditions
,”
ASME J. Vib. Acoust.
,
120
(
2
), pp.
461
467
.
40.
Lyu
,
M.
,
Zhao
,
J.
,
Kacem
,
N.
,
Tang
,
B.
,
Liu
,
P.
,
Song
,
J.
,
Zhong
,
H.
, and
Huang
,
Y.
,
2021
, “
Computational Investigation of High-Order Mode Localization in Electrostatically Coupled Microbeams With Distributed Electrodes for High Sensitivity Mass Sensing
,”
Mech. Syst. Signal Process
,
158
, p.
107781
.
41.
Rabenimanana
,
T.
,
Walter
,
V.
,
Kacem
,
N.
,
Le Moal
,
P.
,
Bourbon
,
G.
, and
Lardiès
,
J.
,
2019
, “
Mass Sensor Using Mode Localization in Two Weakly Coupled MEMS Cantilevers With Different Lengths: Design and Experimental Model Validation
,”
Sens. Actuators, A
,
295
, pp.
643
652
.
42.
Hajjaj
,
A. Z.
,
Jaber
,
N.
,
Ilyas
,
S.
,
Alfosail
,
F. K.
, and
Younis
,
M. I.
,
2020
, “
Linear and Nonlinear Dynamics of Micro and Nano-Resonators: Review of Recent Advances
,”
Int. J. Non-Linear Mech.
,
119
, p.
22
.
43.
Zhao
,
C.
,
Wood
,
G. S.
,
Xie
,
J.
,
Chang
,
H.
,
Pu
,
S. H.
, and
Kraft
,
M.
,
2015
, “
Comparative Study of Different Output Metrics for a Three Weakly Coupled Resonator Sensor
,”
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems
,
Estoril, Portugal
,
Jan. 18–22
.
44.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K. L.
,
2002
, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
,
102
(
1–2
), pp.
139
150
.
45.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2010
, “
Nonlinear Dynamic Behavior of a Microbeam Array Subject to Parametric Actuation at Low, Medium and Large DC-Voltages
,”
Nonlinear Dyn.
,
67
(
1
), pp.
1
36
.
46.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2010
, “
Bifurcations and Loss of Orbital Stability in Nonlinear Viscoelastic Beam Arrays Subject to Parametric Actuation
,”
J. Sound Vib.
,
329
(
18
), pp.
3835
3855
.
47.
Zhao
,
C.
,
Montaseri
,
M. H.
,
Wood
,
G. S.
,
Pu
,
S. H.
,
Seshia
,
A. A.
, and
Kraft
,
M.
,
2016
, “
A Review on Coupled MEMS Resonators for Sensing Applications Utilizing Mode Localization
,”
Sens. Actuators, A
,
249
, pp.
93
111
.
48.
Thiruvenkatanathan
,
P.
,
Woodhouse
,
J.
,
Yan
,
J.
, and
Seshia
,
A. A.
,
2011
, “
Limits to Mode-Localized Sensing Using Micro- and Nanomechanical Resonator Arrays
,”
J. Appl. Phys.
,
109
(
10
), pp.
114
845
.
49.
Guillot
,
L.
,
Cochelin
,
B.
, and
Vergez
,
C.
,
2019
, “
A Taylor Series-Based Continuation Method for Solutions of Dynamical Systems
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2827
2845
.
50.
Cochelin
,
B.
, and
Vergez
,
C.
,
2009
, “
A High Order Purely Frequency-Based Harmonic Balance Formulation for Continuation of Periodic Solutions
,”
J. Sound Vib.
,
324
(
1
), pp.
243
262
.
You do not currently have access to this content.