Abstract

This paper presents a physics-constrained data-driven method that variationally embeds measured data in the modeling and analysis framework. The physics-based model is augmented with sparse but high-fidelity data through a variationally derived loss function. The structure of the loss function is analyzed in the context of variational correction to the modeled response wherein loss function penalizes the difference in the modeled response from the measured data that represents the local response of the system. The variationally embedded measured data (VEMD) method results in forward simulations that are not only driven by boundary and initial conditions but are also augmented by real measurements taken at only a small number of observation points. In the context of forward simulations, the proposed approach can be seen as inducing inductive biases that exploit the difference between the computed and measured quantities in the parametric space. With the help of a model problem, we show that the proposed method learns from the sparse high-fidelity datasets while preserving conservation properties of the balance laws. Method is applied to a non-smooth model problem and the mathematical attributes of the formulation are investigated in the context of high-fidelity sparse datasets.

References

1.
Ainsworth
,
M.
, and
Oden
,
J. T.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
1–2
), pp.
1
88
.
2.
Arnold
,
D. N.
,
Falk
,
R. S.
, and
Winther
,
R.
,
2006
, “
Finite Element Exterior Calculus, Homological Techniques, and Applications
,”
Acta Numer.
,
15
, pp.
1
155
.
3.
Peng
,
G. C.
,
Alber
,
M.
,
Buganza Tepole
,
A.
,
Cannon
,
W. R.
,
De
,
S.
,
Dura-Bernal
,
S.
,
Garikipati
,
K.
, et al.,
2021
, “
Multiscale Modeling Meets Machine Learning: What Can We Learn?
,”
Arch. Comput. Methods Eng.
,
28
(
3
), pp.
1017
1037
.
4.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
5.
Song
,
F.
,
Pange
,
G.
,
Meneveau
,
C.
, and
Karniadakis
,
G.
,
2019
, “Fractional Physical-Inform Neural Networks (FPINNs) for Turbulent Flows,” APS Division of Fluid Dynamics Meeting Abstracts, pp. A19–002.
6.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
7.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112732
.
8.
Masud
,
A.
,
Truster
,
T. J.
, and
Bergman
,
L. A.
,
2011
, “
A Variational Multiscale a Posteriori Error Estimation Method for Mixed Form of Nearly Incompressible Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
47–48
), pp.
3453
3481
.
9.
Hlepas
,
G.
,
Truster
,
T.
, and
Masud
,
A.
,
2014
, “
A Heterogeneous Modeling Method for Porous Media Flows
,”
Int. J. Numer. Methods Fluids
,
75
(
7
), pp.
487
518
.
10.
Kang
,
S.
,
Kwack
,
J.
, and
Masud
,
A.
,
2022
, “
Variational Coupling of Non-Matching Discretizations Across Finitely Deforming Fluid–Structure Interfaces
,”
Int. J. Numer. Methods Fluids
,
94
(
6
), pp.
678
718
.
11.
Masud
,
A.
, and
Al-Naseem
,
A. A.
,
2018
, “
Variationally Derived Discontinuity Capturing Methods: Fine Scale Models With Embedded Weak and Strong Discontinuities
,”
Comput. Methods Appl. Mech. Eng.
,
340
, pp.
1102
1134
.
12.
Masud
,
A.
, and
Truster
,
T. J.
,
2013
, “
A Framework for Residual-Based Stabilization of Incompressible Finite Elasticity: Stabilized Formulations and F Methods for Linear Triangles and Tetrahedra
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
359
399
.
13.
Baker
,
N.
,
Alexander
,
F.
,
Bremer
,
T.
,
Hagberg
,
A.
,
Kevrekidis
,
Y.
,
Najm
,
H.
,
Parashar
,
M.
, et al.,
2018
, “Brochure on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence,” Tech. Rep., USDOE Office of Science (SC) (United States).
14.
Chen
,
X.
,
Duan
,
J.
, and
Karniadakis
,
G. E.
,
2021
, “
Learning and Meta-Learning of Stochastic Advection–Diffusion–Reaction Systems From Sparse Measurements
,”
Euro. J. Appl. Math.
,
32
(
3
), pp.
397
420
.
15.
He
,
J.
,
Li
,
L.
,
Xu
,
J.
, and
Zheng
,
C.
, “Relu Deep Neural Networks and Linear Finite Elements,” preprint arXiv:1807.03973.
16.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
, p.
112789
.
17.
Shalev-Shwartz
,
S.
, and
Ben-David
,
S.
,
2014
,
Understanding Machine Learning: From Theory to Algorithms
,
Cambridge University Press
,
New York, NY
.
18.
Hofmann
,
T.
,
Schölkopf
,
B.
, and
Smola
,
A. J.
,
2008
, “
Kernel Methods in Machine Learning
,”
Ann. Stat.
,
36
(
3
), pp.
1171
1220
.
19.
Cunningham
,
P.
, and
Delany
,
S. J.
,
2021
, “
k-Nearest Neighbour Classifiers—A Tutorial
,”
ACM Comput. Surv.
,
54
(
6
), pp.
1
25
.
20.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
21.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
SIAM J. Sci. Comput.
,
40
(
1
), pp.
A172
A198
.
22.
Ren
,
Y.
,
Zhang
,
L.
, and
Suganthan
,
P. N.
,
2016
, “
Ensemble Classification and Regression-Recent Developments, Applications and Future Directions
,”
IEEE Comput. Intel. Mag.
,
11
(
1
), pp.
41
53
.
23.
Strang
,
G.
,
2019
,
Linear Algebra and Learning From Data
, Vol. 4,
Wellesley-Cambridge Press
,
Cambridge
.
24.
Kutz
,
J. N.
,
2013
,
Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data
,
Oxford University Press
,
Oxford, UK
.
25.
Schölkopf
,
B.
,
Smola
,
A. J.
, and
Bach
,
F.
,
2002
,
Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
,
MIT Press
,
Cambridge, MA
.
26.
Truster
,
T. J.
, and
Masud
,
A.
,
2014
, “
Primal Interface Formulation for Coupling Multiple PDEs: A Consistent Derivation Via the Variational Multiscale Method
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
194
224
.
27.
Lu
,
Y.
,
Belytschko
,
T.
, and
Liu
,
W.
,
1991
, “
A Variationally Coupled Fe-be Method for Elasticity and Fracture Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
1
), pp.
21
37
.
28.
Masud
,
A.
, and
Xia
,
K.
,
2005
, “
A Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity
,”
J. Appl. Mech.
,
72
(
5
), pp.
711
720
.
29.
Harari
,
I.
, and
Hughes
,
T. J.
,
1992
, “
What are C and H?: Inequalities for the Analysis and Design of Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
97
(
2
), pp.
157
192
.
30.
Brezzi
,
F.
,
Bristeau
,
M.-O.
,
Franca
,
L. P.
,
Mallet
,
M.
, and
Rogé
,
G.
,
1992
, “
A Relationship Between Stabilized Finite Element Methods and the Galerkin Method With Bubble Functions
,”
Comput. Methods Appl. Mech. Eng.
,
96
(
1
), pp.
117
129
.
31.
Goodier
,
J. N.
, and
Timoshenko
,
S.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York, NY
.
You do not currently have access to this content.