Abstract

Based on their shape-shifting capabilities, soft active materials have enabled new possibilities for the engineering of sensing and actuation devices. While the relation between active strains and emergent equilibrium shapes has been fully characterized, the transient morphing of thin structures is a rather unexplored topic. Here, we focus on polymer gel plates and derive a reduced linear model to study their time-dependent response to changes in the fluid environment. We show that independent control of stretching and bending deformations in stress-free conditions allows to realize spherical shapes with prescribed geometry of the mid-plane. Furthermore, we demonstrate that tensile (compressive) membrane stresses delay (accelerate) swelling-induced shape transitions compared to the stress-free evolution. We believe that these effects should be considered for the accurate design of smart systems and may contribute to explain the complexity of natural shapes.

References

1.
Goriely
,
A.
, and
Ben Amar
,
M.
,
2005
, “
Differential Growth and Instability in Elastic Shells
,”
Phys. Rev. Lett.
,
94
(
19
), p.
198103
. 10.1103/PhysRevLett.94.198103
2.
Armon
,
S.
,
Efrati
,
E.
,
Kupferman
,
R.
, and
Sharon
,
E.
,
2011
, “
Geometry and Mechanics in the Opening of Chiral Seed Pods
,”
Science
,
333
(
6050
), pp.
1726
1730
. 10.1126/science.1203874
3.
Arroyo
,
M.
, and
DeSimone
,
A.
,
2014
, “
Shape Control of Active Surfaces Inspired by the Movement of Euglenids
,”
J. Mech. Phys. Solids.
,
62
, pp.
99
112
. 10.1016/j.jmps.2013.09.017
4.
Pezzulla
,
M.
,
Stoop
,
N.
,
Steranka
,
M. P.
,
Bade
,
A. J.
, and
Holmes
,
D. P.
,
2018
, “
Curvature-Induced Instabilities of Shells
,”
Phys. Rev. Lett.
,
120
(
4
), p.
048002
. 10.1103/PhysRevLett.120.048002
5.
Noselli
,
G.
,
Beran
,
A.
,
Arroyo
,
M.
, and
DeSimone
,
A.
,
2019
, “
Swimming Euglena Respond to Confinement With a Behavioural Change Enabling Effective Crawling
,”
Nat. Phys.
,
15
(
5
), pp.
496
502
. 10.1038/s41567-019-0425-8
6.
Cicconofri
,
G.
,
Arroyo
,
M.
,
Noselli
,
G.
, and
DeSimone
,
A.
,
2020
, “
Morphable Structures From Unicellular Organisms With Active, Shape-Shifting Envelopes: Variations on a Theme by Gauss
,”
Int. J. Non-Linear Mech.
,
118
(
4
), p.
103278
. 10.1016/j.ijnonlinmec.2019.103278
7.
Klein
,
Y.
,
Efrati
,
E.
, and
Sharon
,
E.
,
2007
, “
Shaping of Elastic Sheets by Prescription of Non-Euclidean Metrics
,”
Science
,
315
(
5815
), pp.
1116
1120
. 10.1126/science.1135994
8.
Efrati
,
E.
,
Sharon
,
E.
, and
Kupferman
,
R.
,
2009
, “
Elastic Theory of Unconstrained Non-Euclidean Plates
,”
J. Mech. Phys. Solids.
,
57
(
4
), pp.
762
775
. 10.1016/j.jmps.2008.12.004
9.
Ambulo
,
C. P.
,
Burroughs
,
J. J.
,
Boothby
,
J. M.
,
Kim
,
H.
,
Shankar
,
M. R.
, and
Ware
,
T. H.
,
2017
, “
Four-Dimensional Printing of Liquid Crystal Elastomers
,”
ACS Appl. Mate. Inter.
,
9
(
42
), pp.
37332
37339
. 10.1021/acsami.7b11851
10.
Aharoni
,
H.
,
Xia
,
Y.
,
Zhang
,
X.
,
Kamien
,
R. D.
, and
Yang
,
S.
,
2018
, “
Universal Inverse Design of Surfaces With Thin Nematic Elastomer Sheets
,”
Proc. Natl. Acad. Sci. USA
,
115
(
28
), pp.
7206
7211
. 10.1073/pnas.1804702115
11.
Agostiniani
,
V.
,
Lucantonio
,
A.
, and
Lučić
,
D.
,
2019
, “
Heterogeneous Elastic Plates With In-Plane Modulation of the Target Curvature and Applications to Thin Gel Sheets
,”
ESAIM: COCV
,
25
, p.
24
. 10.1051/cocv/2018046
12.
Lucantonio
,
A.
, and
DeSimone
,
A.
,
2020
, “
Computational Design of Shape-Programmable Gel Plates
,”
Mech. Mater.
,
144
, p.
103313
. 10.1016/j.mechmat.2020.103313
13.
Nojoomi
,
A.
,
Arslan
,
H.
,
Lee
,
K.
, and
Yum
,
K.
,
2018
, “
Bioinspired 3d Structures With Programmable Morphologies and Motions
,”
Nat. Commun.
,
9
(
1
), p.
3705
. 10.1038/s41467-018-05569-8
14.
Guseinov
,
R.
,
McMahan
,
C.
,
Pérez
,
J.
,
Daraio
,
C.
, and
Bickel
,
B.
,
2020
, “
Programming Temporal Morphing of Self-Actuated Shells
,”
Nat. Commun.
,
11
(
1
), p.
237
. 10.1038/s41467-019-14015-2
15.
Taber
,
L. A.
,
1992
, “
A Theory for Transverse Deflection of Poroelastic Plates
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
628
634
. 10.1115/1.2893770
16.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
17.
Marciniak-Czochra
,
A.
, and
Mikelić
,
A.
,
2015
, “
A Rigorous Derivation of the Equations for the Clamped Biot-Kirchhoff-Love Poroelastic Plate
,”
Arch. Rational Mech. Anal.
,
215
(
3
), pp.
1035
1062
. 10.1007/s00205-014-0805-2
18.
Paroni
,
R.
, and
Tomassetti
,
G.
,
2018
, “
Linear Models for Thin Plates of Polymer Gels
,”
Math. Mech. Solids
,
23
(
5
), pp.
835
862
. 10.1177/1081286517698740
19.
Miara
,
B.
,
1994
, “
Justification of the Asymptotic Analysis of Elastic Plates. I. The Linear Case
,”
Asymptotic Anal.
,
9
(
1
), pp.
47
60
. 10.3233/ASY-1994-9104
20.
Ciarlet
,
P. G.
,
Gratie
,
L.
,
Mardare
,
C.
, and
Shen
,
M.
,
2008
, “
Saint Venant Compatibility Equations on a Surface Application to Intrinsic Shell Theory
,”
Math. Models Methods Appl. Sci.
,
18
(
2
), pp.
165
194
. 10.1142/S0218202508002644
21.
Nehari
,
Z.
,
1952
,
Conformal Mapping
,
McGraw-Hill
,
New York
.
22.
Abate
,
J.
, and
Whitt
,
W.
,
2006
, “
A Unified Framework for Numerically Inverting Laplace Transforms
,”
INFORMS J. Comput.
,
18
(
4
), pp.
408
421
. 10.1287/ijoc.1050.0137
23.
Tanaka
,
T.
, and
Fillmore
,
D. J.
,
1979
, “
Kinetics of Swelling of Gels
,”
J. Chem. Phys.
,
70
(
3
), pp.
1214
1218
. 10.1063/1.437602
24.
Yamaue
,
T.
, and
Doi
,
M.
,
2004
, “
Theory of One-Dimensional Swelling Dynamics of Polymer Gels Under Mechanical Constraint
,”
Phys. Rev. E
,
69
(
4
), p.
041402
. 10.1103/PhysRevE.69.041402
25.
Lucantonio
,
A.
, and
Nardinocchi
,
P.
,
2012
, “
Reduced Models of Swelling-Induced Bending of Gel Bars
,”
Int. J. Solids. Struct.
,
49
(
11–12
), pp.
1399
1405
. 10.1016/j.ijsolstr.2012.02.025
You do not currently have access to this content.