Abstract

The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key questions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the biggest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simultaneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate.

References

1.
Freund
,
L. B.
,
1998
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Broberg
,
K. B.
,
1999
,
Cracks and Fracture
,
Elsevier
,
New York
.
3.
Das
,
S.
,
1985
, “Application of Dynamic Shear Crack Models to the Study of the Earthquake Faulting Process,”
Dynamic Fracture
,
Springer
,
New York
, pp.
137
150
.
4.
Dmowska
,
R.
, and
Rice
,
J.
,
1986
, “Fracture Theory and Its Seismological Applications,”
Continuum Theories in Solid Earth Physics
,
R.
Teisseyre
, ed.,
Polish Scientific
,
Warsaw
, pp.
187
255
.
5.
Rice
,
J. R.
,
2001
, “New Perspectives on Crack and Fault Dynamics,”
Mechanics for a New Millennium
,
Springer
,
New York
, pp.
1
24
.
6.
Scholz
,
C. H.
,
2019
,
The Mechanics of Earthquakes and Faulting
,
Cambridge University Press
,
Cambridge
.
7.
Fialko
,
Y.
,
2006
, “
Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System
,”
Nature
,
441
(
7096
), pp.
968
971
. 10.1038/nature04797
8.
Tullis
,
T. E.
,
2015
,
Treatise on Geophysics
, 2nd ed.,
Elsevier
,
Oxford
, pp.
139
159
.
9.
Rosakis
,
A. J.
,
2002
, “
Intersonic Shear Cracks and Fault Ruptures
,”
Adv. Phys.
,
51
(
4
), pp.
1189
1257
. 10.1080/00018730210122328
10.
Rosakis
,
A. J.
,
Xia
,
K.
,
Lykotrafitis
,
G.
, and
Kanamori
,
H.
,
2007
, “Dynamic Shear Rupture in Frictional Interfaces-Speeds, Directionality, and Modes,”
Treatise on Geophysics
,
Elsevier
,
New York
, pp.
153
192
.
11.
Cotterell
,
B.
, and
Rice
,
J.
,
1980
, “
Slightly Curved or Kinked Cracks
,”
Int. J. Fract.
,
16
(
2
), pp.
155
169
. 10.1007/BF00012619
12.
Nemat-Nasser
,
S.
, and
Horii
,
H.
,
1982
, “
Compression-Induced Nonplanar Crack Extension With Application to Splitting, Exfoliation, and Rockburst
,”
J. Geophys. Res. Solid Earth
,
87
(
B8
), pp.
6805
6821
. 10.1029/JB087iB08p06805
13.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
. 10.1016/S0065-2156(08)70164-9
14.
Melin
,
S.
,
1986
, “
When Does a Crack Grow Under Mode II Conditions?
Int. J. Fract.
,
30
(
2
), pp.
103
114
.
15.
Broberg
,
K.
,
1987
, “
On Crack Paths
,”
Eng. Fract. Mech.
,
28
(
5–6
), pp.
663
679
. 10.1016/0013-7944(87)90060-9
16.
Yao
,
W.
,
Xu
,
Y.
,
Yu
,
C.
, and
Xia
,
K.
,
2017
, “
A Dynamic Punch-Through Shear Method for Determining Dynamic Mode II Fracture Toughness of Rocks
,”
Eng. Fract. Mech.
,
176
, pp.
161
177
. 10.1016/j.engfracmech.2017.03.012
17.
Xu
,
Y.
,
Yao
,
W.
,
Zhao
,
G.
, and
Xia
,
K.
,
2019
, “
Evaluation of the Short Core in Compression (SCC) Method for Measuring Mode II Fracture Toughness of Rocks
,”
Eng. Fract. Mech.
, p.
106747
. 10.1016/j.engfracmech.2019.106747
18.
Needleman
,
A.
,
1999
, “
An Analysis of Intersonic Crack Growth Under Shear Loading
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
847
857
. 10.1115/1.2791788
19.
Gao
,
H.
,
Huang
,
Y.
,
Gumbsch
,
P.
, and
Rosakis
,
A.
,
1999
, “
On Radiation-Free Transonic Motion of Cracks and Dislocations
,”
J. Mech. Phys. Solids
,
47
(
9
), pp.
1941
1961
. 10.1016/S0022-5096(98)00126-4
20.
Abraham
,
F. F.
, and
Gao
,
H.
,
2000
, “
How Fast can Cracks Propagate?
Phys. Rev. Lett.
,
84
(
14
), p.
3113
. 10.1103/PhysRevLett.84.3113
21.
Xia
,
K.
,
Rosakis
,
A. J.
, and
Kanamori
,
H.
,
2004
, “
Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition
,”
Science
,
303
(
5665
), pp.
1859
1861
. 10.1126/science.1094022
22.
Fineberg
,
J.
, and
Bouchbinder
,
E.
,
2015
, “
Recent Developments in Dynamic Fracture: Some Perspectives
,”
Int. J. Fract.
,
196
(
1–2
), pp.
33
57
. 10.1007/s10704-015-0038-x
23.
Broberg
,
K.
,
1996
, “
How Fast Can a Crack go?
,”
Mater. Sci.
,
32
(
1
), pp.
80
86
. 10.1007/BF02538928
24.
Rosakis
,
A.
, and
Huang
,
Y.
,
2003
,
Comprehensive Structural Integrity Handbook, Fracture of Materials From Nano to Macro
,
Elsevier Ltd
,
Oxford
, pp.
137
179
.
25.
Tippur
,
H.
, and
Rosakis
,
A.
,
1991
, “
Quasi-Static and Dynamic Crack Growth Along Bimaterial Interfaces: A Note on Crack-Tip Field Measurements Using Coherent Gradient Sensing
,”
Exp. Mech.
,
31
(
3
), pp.
243
251
. 10.1007/BF02326067
26.
Lambros
,
J.
, and
Rosakis
,
A. J.
,
1995
, “
Dynamic Decohesion of Bimaterials: Experimental Observations and Failure Criteria
,”
Int. J. Solids Struct.
,
32
(
17–18
), pp.
2677
2702
. 10.1016/0020-7683(94)00291-4
27.
Singh
,
R.
, and
Shukla
,
A.
,
1996
, “
Subsonic and Intersonic Crack Growth Along a Bimaterial Interface
,”
J. Appl. Mech.
,
63
(
4
), pp.
919
924
. 10.1115/1.2787247
28.
Singh
,
R. P.
,
Lambros
,
J.
,
Shukla
,
A.
, and
Rosakis
,
A. J.
,
1997
, “
Investigation of the Mechanics of Intersonic Crack Propagation Along a Bimaterial Interface Using Coherent Gradient Sensing and Photoelasticity
,”
Philos. Trans. R. Soc. London, Ser. A
,
453
(
1967
), pp.
2649
2667
. 10.1098/rspa.1997.0141
29.
Samudrala
,
O.
, and
Rosakis
,
A.
,
2003
, “
Effect of Loading and Geometry on the Subsonic/Intersonic Transition of a Bimaterial Interface Crack
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
309
337
. 10.1016/S0013-7944(02)00025-5
30.
Huang
,
Y.
,
Wang
,
W.
,
Liu
,
C.
, and
Rosakis
,
A.
,
1998
, “
Intersonic Crack Growth in Bimaterial Interfaces: An Investigation of Crack Face Contact
,”
J. Mech. Phys. Solids
,
46
(
11
), pp.
2233
2259
. 10.1016/S0022-5096(98)00003-9
31.
Wang
,
W.
,
Huang
,
Y.
,
Rosakis
,
A.
, and
Liu
,
C.
,
1998
, “
Effect of Elastic Mismatch in Intersonic Crack Propagation Along a Bimaterial Interface
,”
Eng. Fract. Mech.
,
61
(
5–6
), pp.
471
485
. 10.1016/s0013-7944(98)00089-7
32.
Rosakis
,
A.
,
Samudrala
,
O.
, and
Coker
,
D.
,
1999
, “
Cracks Faster Than the Shear Wave Speed
,”
Science
,
284
(
5418
), pp.
1337
1340
. 10.1126/science.284.5418.1337
33.
Coker
,
D.
, and
Rosakis
,
A. J.
,
2001
, “
Experimental Observations of Intersonic Crack Growth in Asymmetrically Loaded Unidirectional Composite Plates
,”
Philos. Mag. A
,
81
(
3
), pp.
571
595
. 10.1080/01418610108212160
34.
Huang
,
Y.
,
Wang
,
W.
,
Liu
,
C.
, and
Rosakis
,
A.
,
1999
, “
Analysis of Intersonic Crack Growth in Unidirectional Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
47
(
9
), pp.
1893
1916
. 10.1016/S0022-5096(98)00124-0
35.
Archuleta
,
R. J.
,
1984
, “
A Faulting Model for the 1979 Imperial Valley Earthquake
,”
J. Geophys. Res. Solid Earth
,
89
(
B6
), pp.
4559
4585
. 10.1029/JB089iB06p04559
36.
Spudich
,
P.
, and
Cranswick
,
E.
,
1984
, “
Direct Observation of Rupture Propagation During the 1979 Imperial Valley Earthquake Using a Short Baseline Accelerometer Array
,”
Bull. Seismol. Soc. Am.
,
74
(
6
), pp.
2083
2114
.
37.
Olsen
,
K.
,
Madariaga
,
R.
, and
Archuleta
,
R. J.
,
1997
, “
Three-dimensional Dynamic Simulation of the 1992 Landers Earthquake
,”
Science
,
278
(
5339
), pp.
834
838
. 10.1126/science.278.5339.834
38.
Burridge
,
R.
,
1973
, “
Admissible Speeds for Plane-Strain Self-Similar Shear Cracks With Friction but Lacking Cohesion
,”
Geophys. J. Int.
,
35
(
4
), pp.
439
455
. 10.1111/j.1365-246X.1973.tb00608.x
39.
Andrews
,
D.
,
1976
, “
Rupture Velocity of Plane Strain Shear Cracks
,”
J. Geophys. Res. Solid Earth
,
81
(
32
), pp.
5679
5687
. 10.1029/JB081i032p05679
40.
Coker
,
D.
,
Lykotrafitis
,
G.
,
Needleman
,
A.
, and
Rosakis
,
A.
,
2005
, “
Frictional Sliding Modes Along an Interface Between Identical Elastic Plates Subject to Shear Impact Loading
,”
J. Mech. Phys. Solids
,
53
(
4
), pp.
884
922
. 10.1016/j.jmps.2004.11.003
41.
Bouchon
,
M.
,
Bouin
,
M. P.
,
Karabulut
,
H.
,
Toksöz
,
M. N.
,
Dietrich
,
M.
, and
Rosakis
,
A. J.
,
2001
, “
How Fast is Rupture During an Earthquake? New Insights From the 1999 Turkey Earthquakes
,”
Geophys. Res. Lett.
,
28
(
14
), pp.
2723
2726
. 10.1029/2001GL013112
42.
Bouchon
,
M.
, and
Vallée
,
M.
,
2003
, “
Observation of Long Supershear Rupture During the Magnitude 8.1 Kunlunshan Earthquake
,”
Science
,
301
(
5634
), pp.
824
826
. 10.1126/science.1086832
43.
Ellsworth
,
W.
,
Celebi
,
M.
,
Evans
,
J.
,
Jensen
,
E.
,
Kayen
,
R.
,
Metz
,
M.
,
Nyman
,
D.
,
Roddick
,
J.
,
Spudich
,
P.
, and
Stephens
,
C.
,
2004
, “
Near-Field Ground Motion of the 2002 Denali Fault, Alaska, Earthquake Recorded at Pump Station 10
,”
Earthquake spectra
,
20
(
3
), pp.
597
615
. 10.1193/1.1778172
44.
Song
,
S. G.
,
Beroza
,
G. C.
, and
Segall
,
P.
,
2008
, “
A Unified Source Model for the 1906 San Francisco Earthquake
,”
Bull. Seismol. Soc. Am.
,
98
(
2
), pp.
823
831
. 10.1785/0120060402
45.
Bao
,
H.
,
Ampuero
,
J.-P.
,
Meng
,
L.
,
Fielding
,
E. J.
,
Liang
,
C.
,
Milliner
,
C. W.
,
Feng
,
T.
, and
Huang
,
H.
,
2019
, “
Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake
,”
Nat. Geosci.
,
12
(
3
), pp.
200
205
. 10.1038/s41561-018-0297-z
46.
Rubinstein
,
S. M.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2004
, “
Detachment Fronts and the Onset of Dynamic Friction
,”
Nature
,
430
(
7003
), p.
1005
. 10.1038/nature02830
47.
Dunham
,
E. M.
,
2007
, “
Conditions Governing the Occurrence of Supershear Ruptures Under Slip-Weakening Friction
,”
J. Geophys. Res. Solid Earth
,
112
(
B7
). 10.1029/2006JB004717
48.
Liu
,
Y.
, and
Lapusta
,
N.
,
2008
, “
Transition of Mode II Cracks From Sub-Rayleigh to Intersonic Speeds in the Presence of Favorable Heterogeneity
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
25
50
. 10.1016/j.jmps.2007.06.005
49.
Ben-David
,
O.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2010
, “
The Dynamics of the Onset of Frictional Slip
,”
Science
,
330
(
6001
), pp.
211
214
. 10.1126/science.1194777
50.
Schubnel
,
A.
,
Nielsen
,
S.
,
Taddeucci
,
J.
,
Vinciguerra
,
S.
, and
Rao
,
S.
,
2011
, “
Photo-Acoustic Study of Subshear and Supershear Ruptures in the Laboratory
,”
Earth Planet. Sci. Lett.
,
308
(
3–4
), pp.
424
432
. 10.1016/j.epsl.2011.06.013
51.
Passelegue
,
F. X.
,
Schubnel
,
A.
,
Nielsen
,
S.
,
Bhat
,
H. S.
, and
Madariaga
,
R.
,
2013
, “
From Sub-Rayleigh to Supershear Ruptures During Stick-Slip Experiments on Crustal Rocks
,”
Science
,
340
(
6137
), pp.
1208
1211
. 10.1126/science.1235637
52.
Svetlizky
,
I.
, and
Fineberg
,
J.
,
2014
, “
Classical Shear Cracks Drive the Onset of dry Frictional Motion
,”
Nature
,
509
(
7499
), p.
205
. 10.1038/nature13202
53.
Bayart
,
E.
,
Svetlizky
,
I.
, and
Fineberg
,
J.
,
2016
, “
Fracture Mechanics Determine the Lengths of Interface Ruptures That Mediate Frictional Motion
,”
Nat. Phys.
,
12
(
2
), pp.
166
170
. 10.1038/nphys3539
54.
Svetlizky
,
I.
,
Bayart
,
E.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2017
, “
Frictional Resistance Within the Wake of Frictional Rupture Fronts
,”
Phys. Rev. Lett.
,
118
(
23
), p.
234301
. 10.1103/PhysRevLett.118.234301
55.
Kammer
,
D. S.
,
Svetlizky
,
I.
,
Cohen
,
G.
, and
Fineberg
,
J.
,
2018
, “
The Equation of Motion for Supershear Frictional Rupture Fronts
,”
Sci. Adv.
,
4
(
7
), p.
eaat5622
. 10.1126/sciadv.aat5622
56.
Xia
,
K.
,
Rosakis
,
A. J.
,
Kanamori
,
H.
, and
Rice
,
J. R.
,
2005
, “
Laboratory Earthquakes Along Inhomogeneous Faults: Directionality and Supershear
,”
Science
,
308
(
5722
), pp.
681
684
.
57.
Biegel
,
R. L.
,
Sammis
,
C. G.
, and
Rosakis
,
A. J.
,
2008
, “
An Experimental Study of the Effect of off-Fault Damage on the Velocity of a Slip Pulse
,”
J. Geophys. Res. Solid Earth
,
113
(
B4
). 10.1029/2007JB005234
58.
Bhat
,
H. S.
,
Biegel
,
R. L.
,
Rosakis
,
A. J.
, and
Sammis
,
C. G.
,
2010
, “
The Effect of Asymmetric Damage on Dynamic Shear Rupture Propagation II: With Mismatch in Bulk Elasticity
,”
Tectonophysics
,
493
(
3–4
), pp.
263
271
. 10.1016/j.tecto.2010.03.016
59.
Lu
,
X.
,
Lapusta
,
N.
, and
Rosakis
,
A. J.
,
2007
, “
Pulse-Like and Crack-Like Ruptures in Experiments Mimicking Crustal Earthquakes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
48
), pp.
18931
18936
. 10.1073/pnas.0704268104
60.
Lu
,
X.
,
Rosakis
,
A. J.
, and
Lapusta
,
N.
,
2010
, “
Rupture Modes in Laboratory Earthquakes: Effect of Fault Prestress and Nucleation Conditions
,”
J. Geophys. Res. Solid Earth
,
115
(
B12
). 10.1029/2009jb006833
61.
Ngo
,
D.
,
Huang
,
Y.
,
Rosakis
,
A.
,
Griffith
,
W.
, and
Pollard
,
D.
,
2012
, “
Off-Fault Tensile Cracks: A Link Between Geological Fault Observations, Lab Experiments, and Dynamic Rupture Models
,”
J. Geophys. Res. Solid Earth
,
117
(
B1
). 10.1029/2011jb008577
62.
Mello
,
M.
,
Bhat
,
H. S.
,
Rosakis
,
A. J.
, and
Kanamori
,
H.
,
2010
, “
Identifying the Unique Ground Motion Signatures of Supershear Earthquakes: Theory and Experiments
,”
Tectonophysics
,
493
(
3–4
), pp.
297
326
. 10.1016/j.tecto.2010.07.003
63.
Mello
,
M.
,
Bhat
,
H. S.
, and
Rosakis
,
A. J.
,
2016
, “
Spatiotemporal Properties of Sub-Rayleigh and Supershear Rupture Velocity Fields: Theory and Experiments
,”
J. Mech. Phys. Solids
,
93
, pp.
153
181
. 10.1016/j.jmps.2016.02.031
64.
Gabuchian
,
V.
,
Rosakis
,
A. J.
,
Lapusta
,
N.
, and
Oglesby
,
D. D.
,
2014
, “
Experimental Investigation of Strong Ground Motion Due to Thrust Fault Earthquakes
,”
J. Geophys. Res. Solid Earth
,
119
(
2
), pp.
1316
1336
. 10.1002/2013JB010409
65.
Gabuchian
,
V.
,
Rosakis
,
A. J.
,
Bhat
,
H. S.
,
Madariaga
,
R.
, and
Kanamori
,
H.
,
2017
, “
Experimental Evidence That Thrust Earthquake Ruptures Might Open Faults
,”
Nature
,
545
(
7654
), p.
336
. 10.1038/nature22045
66.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
,
New York, NY
. 10.1007/978-0-387-78747-3
67.
Sutton
,
M.
,
Matta
,
F.
,
Rizos
,
D.
,
Ghorbani
,
R.
,
Rajan
,
S.
,
Mollenhauer
,
D.
,
Schreier
,
H.
, and
Lasprilla
,
A.
,
2017
, “
Recent Progress in Digital Image Correlation: Background and Developments Since the 2013 WM Murray Lecture
,”
Exp. Mech.
,
57
(
1
), pp.
1
30
. 10.1007/s11340-016-0233-3
68.
Hild
,
F.
, and
Roux
,
S.
,
2012
,
Digital Image Correlation
,
Wiley-VCH
,
Weinheim
.
69.
Hild
,
F.
, and
Roux
,
S.
,
2012
, “
Comparison of Local and Global Approaches to Digital Image Correlation
,”
Exp. Mech.
,
52
(
9
), pp.
1503
1519
. 10.1007/s11340-012-9603-7
70.
Wang
,
B.
, and
Pan
,
B.
,
2016
, “
Subset-Based Local vs. Finite Element-Based Global Digital Image Correlation: a Comparison Study
,”
Theor. Appl. Mech. Lett.
,
6
(
5
), pp.
200
208
. 10.1016/j.taml.2016.08.003
71.
Sutton
,
M.
,
Wolters
,
W.
,
Peters
,
W.
,
Ranson
,
W.
, and
McNeill
,
S.
,
1983
, “
Determination of Displacements Using an Improved Digital Correlation Method
,”
Image Vision Comput.
,
1
(
3
), pp.
133
139
. 10.1016/0262-8856(83)90064-1
72.
Sutton
,
M.
,
Mingqi
,
C.
,
Peters
,
W.
,
Chao
,
Y.
, and
McNeill
,
S.
,
1986
, “
Application of an Optimized Digital Correlation Method to Planar Deformation Analysis
,”
Image Vision Comput.
,
4
(
3
), pp.
143
150
. 10.1016/0262-8856(86)90057-0
73.
Sun
,
Y.
,
Pang
,
J. H.
,
Wong
,
C. K.
, and
Su
,
F.
,
2005
, “
Finite Element Formulation for a Digital Image Correlation Method
,”
Appl. Opt.
,
44
(
34
), pp.
7357
7363
. 10.1364/AO.44.007357
74.
Besnard
,
G.
,
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
“Finite-Element” Displacement Fields Analysis From Digital Images: Application to Portevin–Le Châtelier Bands
,”
Exp. Mech.
,
46
(
6
), pp.
789
803
. 10.1007/s11340-006-9824-8
75.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2017
, “
Understanding Dynamic Friction Through Spontaneously Evolving Laboratory Earthquakes
,”
Nat. Commun.
,
8
, p.
15991
. 10.1038/ncomms15991
76.
Gori
,
M.
,
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2018
, “
Pressure Shock Fronts Formed by Ultra-Fast Shear Cracks in Viscoelastic Materials
,”
Nat. Commun.
,
9
(
1
), p.
4754
. 10.1038/s41467-018-07139-4
77.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2019
, “
Full-Field Ultrahigh-Speed Quantification of Dynamic Shear Ruptures Using Digital Image Correlation
,”
Exp. Mech.
,
59
(
5
), pp.
1
32
. 10.1144/gsl.sp.2000.169.01.03
78.
Tal
,
Y.
,
Rubino
,
V.
,
Rosakis
,
A. J.
, and
Lapusta
,
N.
,
2019
, “
Enhanced Digital Image Correlation Analysis of Ruptures with Enforced Traction Continuity Conditions Across Interfaces
,”
Appl. Sci.
,
9
(
8
), p.
1625
. 10.3390/app9081625
79.
Rubino
,
V.
,
Lapusta
,
N.
,
Rosakis
,
A. J.
,
Leprince
,
S.
, and
Avouac
,
J. P.
,
2015
, “
Static Laboratory Earthquake Measurements with the Digital Image Correlation Method
,”
Exp. Mech.
,
55
(
1
), pp.
77
94
. 10.1007/s11340-014-9893-z
80.
Michel
,
R.
,
Ampuero
,
J.-P.
,
Avouac
,
J.-P.
,
Lapusta
,
N.
,
Leprince
,
S.
,
Redding
,
D.
, and
Somala
,
S.
,
2012
, “
A Geostationary Optical Seismometer, Proof of Concept
,”
IEEE Trans. Geosci. Remote Sens.
,
51
(
1
), pp.
695
703
. 10.1109/TGRS.2012.2201487
81.
Cruikshank
,
K. M.
,
Zhao
,
G.
, and
Johnson
,
A. M.
,
1991
, “
Analysis of Minor Fractures Associated With Joints and Faulted Joints
,”
J. Struct. Geol.
,
13
(
8
), pp.
865
886
. 10.1016/0191-8141(91)90083-U
82.
Rispoli
,
R.
,
1981
, “
Stress Fields About Strike-Slip Faults Inferred From Stylolites and Tension Gashes
,”
Tectonophysics
,
75
(
3–4
), pp.
T29
T36
. 10.1016/0040-1951(81)90274-2
83.
Willemse
,
E. J.
,
Peacock
,
D. C.
, and
Aydin
,
A.
,
1997
, “
Nucleation and Growth of Strike-Slip Faults in Limestones From Somerset, UK
,”
J. Struct. Geol.
,
19
(
12
), pp.
1461
1477
. 10.1016/S0191-8141(97)00056-4
84.
Martel
,
S. J.
, and
Boger
,
W. A.
,
1998
, “
Geometry and Mechanics of Secondary Fracturing Around Small Three-Dimensional Faults in Granitic Rock
,”
J. Geophys. Res. Solid Earth
,
103
(
B9
), pp.
21299
21314
. 10.1029/98JB01393
85.
Cooke
,
M.
,
Mollema
,
P.
,
Pollard
,
D.
, and
Aydin
,
A.
,
2000
, “
Interlayer Slip and Fracture Clusters Within East Kaibab Monocline: Numerical Analysis and Field Investigations
,”
J. Geol. Soc. London
,
169
, pp.
23
49
.
86.
Kattenhorn
,
S. A.
,
Aydin
,
A.
, and
Pollard
,
D. D.
,
2000
, “
Joints at High Angles to Normal Fault Strike: An Explanation Using 3-D Numerical Models of Fault-Perturbed Stress Fields
,”
J. Struct. Geol.
,
22
(
1
), pp.
1
23
. 10.1016/S0191-8141(99)00130-3
87.
Kattenhorn
,
S. A.
, and
Marshall
,
S. T.
,
2006
, “
Fault-Induced Perturbed Stress Fields and Associated Tensile and Compressive Deformation at Fault Tips in the ice Shell of Europa: Implications for Fault Mechanics
,”
J. Struct. Geol.
,
28
(
12
), pp.
2204
2221
. 10.1016/j.jsg.2005.11.010
88.
Barthelat
,
F.
,
Wu
,
Z.
,
Prorok
,
B.
, and
Espinosa
,
H.
,
2003
, “
Dynamic Torsion Testing of Nanocrystalline Coatings Using High-Speed Photography and Digital Image Correlation
,”
Exp. Mech.
,
43
(
3
), pp.
331
340
. 10.1007/BF02410532
89.
Kirugulige
,
M. S.
,
Tippur
,
H. V.
, and
Denney
,
T. S.
,
2007
, “
Measurement of Transient Deformations Using Digital Image Correlation Method and High-Speed Photography: Application to Dynamic Fracture
,”
Appl. Opt.
,
46
(
22
), pp.
5083
5096
. 10.1364/AO.46.005083
90.
Kirugulige
,
M.
, and
Tippur
,
H.
,
2009
, “
Measurement of Fracture Parameters for a Mixed-Mode Crack Driven by Stress Waves Using Image Correlation Technique and High-Speed Digital Photography
,”
Strain
,
45
(
2
), pp.
108
122
. 10.1111/j.1475-1305.2008.00449.x
91.
Jajam
,
K.
, and
Tippur
,
H.
,
2011
, “
An Experimental Investigation of Dynamic Crack Growth Past a Stiff Inclusion
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
1289
1305
. 10.1016/j.engfracmech.2011.02.005
92.
Gao
,
G.
,
Yao
,
W.
,
Xia
,
K.
, and
Li
,
Z.
,
2015
, “
Investigation of the Rate Dependence of Fracture Propagation in Rocks Using Digital Image Correlation (DIC) Method
,”
Eng. Fract. Mech.
,
138
, pp.
146
155
. 10.1016/j.engfracmech.2015.02.021
93.
Gao
,
G.
,
Huang
,
S.
,
Xia
,
K.
, and
Li
,
Z.
,
2015
, “
Application of Digital Image Correlation (DIC) in Dynamic Notched Semi-Circular Bend (NSCB) Tests
,”
Exp. Mech.
,
55
(
1
), pp.
95
104
. 10.1007/s11340-014-9863-5
94.
Koohbor
,
B.
,
Kidane
,
A.
,
Sutton
,
M. A.
,
Zhao
,
X.
, and
Mallon
,
S.
,
2017
, “
Analysis of Dynamic Bending Test Using Ultra High Speed DIC and the Virtual Fields Method
,”
Int. J. Impact Eng.
,
110
, pp.
299
310
. 10.1016/j.ijimpeng.2016.12.021
95.
Pierron
,
F.
,
Cheriguene
,
R.
,
Forquin
,
P.
,
Moulart
,
R.
,
Rossi
,
M.
, and
Sutton
,
M.
,
2011
, “
Performances and Limitations of Three Ultra High-Speed Imaging Cameras for Full-Field Deformation Measurements
,”
Appl. Mech. Mater.
,
70
, pp.
81
86
. www.scientific.net/amm.70.81
96.
Reu
,
P. L.
, “
High/Ultra-High Speed Imaging as a Diagnostic Tool
,”
Appl. Mech. Mater.
, pp.
69
74
.
97.
Xing
,
H.
,
Zhang
,
Q.
,
Braithwaite
,
C. H.
,
Pan
,
B.
, and
Zhao
,
J.
,
2017
, “
High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications
,”
Rock Mech. Rock Eng.
,
50
(
6
), pp.
1611
1659
. 10.1007/s00603-016-1164-0
98.
Kondo
,
Y.
,
Takubo
,
K.
,
Tominaga
,
H.
,
Hirose
,
R.
,
Tokuoka
,
N.
,
Kawaguchi
,
Y.
,
Takaie
,
Y.
,
Ozaki
,
A.
,
Nakaya
,
S.
, and
Yano
,
F.
,
2012
, “
Development of “HyperVision HPV-X” High-Speed Video Camera
,”
Shimadzu Rev.
,
69
, pp.
285
291
.
99.
Tochigi
,
Y.
,
Hanzawa
,
K.
,
Kato
,
Y.
,
Kuroda
,
R.
,
Mutoh
,
H.
,
Hirose
,
R.
,
Tominaga
,
H.
,
Takubo
,
K.
,
Kondo
,
Y.
, and
Sugawa
,
S.
,
2013
, “
A Global-Shutter CMOS Image Sensor With Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous
,”
IEEE J. Solid-State Circuits
,
48
(
1
), pp.
329
338
. 10.1109/JSSC.2012.2219685
100.
Rubino
,
V.
,
Lapusta
,
N.
, and
Rosakis
,
A.
,
2012
, “
Laboratory Earthquake Measurements with the High-Speed Digital Image Correlation Method and Applications to Super-Shear Transition
,”
Proceedings of the AGU Fall Meeting Abstracts.
,
San Francisco
,
CA, Dec. 3–7
.
101.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2015
, “
Dynamic Imaging of Strain and Stress Evolution in Laboratory Earthquakes with the Ultra-High-Speed Digital Image Correlation Technique
,”
Proceedings of the AGU Fall Meeting Abstracts
,
San Francisco
,
CA, Dec. 14–15
.
102.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J. M.
,
2006
, “
The Staircasing Effect in Neighborhood Filters and its Solution
,”
IEEE Trans. Image Process.
,
15
(
6
), pp.
1499
1505
. 10.1109/TIP.2006.871137
103.
Buades
,
A.
,
Coll
,
B.
, and
Morel
,
J. M.
,
2008
, “
Nonlocal Image and Movie Denoising
,”
Int. J. Comput. Vision
,
76
(
2
), pp.
123
139
. 10.1007/s11263-007-0052-1
104.
Ayoub
,
F.
,
Leprince
,
S.
, and
Keene
,
L.
,
2009
,
User’s Guide to COSI-CORR co-Registration of Optically Sensed Images and Correlation
,
California Institute of Technology
,
Pasadena, CA
, p.
38
.
105.
Jin
,
H.
, and
Bruck
,
H. A.
,
2005
, “
Theoretical Development for Pointwise Digital Image Correlation
,”
Opt. Eng.
,
44
(
6
), p.
067003
. 10.1117/1.1928908
106.
Réthoré
,
J.
,
Hild
,
F.
, and
Roux
,
S.
,
2007
, “
Shear-Band Capturing Using a Multiscale Extended Digital Image Correlation Technique
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
49–52
), pp.
5016
5030
. 10.1016/j.cma.2007.06.019
107.
Réthoré
,
J.
,
Hild
,
F.
, and
Roux
,
S.
,
2008
, “
Extended Digital Image Correlation With Crack Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
73
(
2
), pp.
248
272
. 10.1002/nme.2070
108.
Poissant
,
J.
, and
Barthelat
,
F.
,
2010
, “
A Novel ‘Subset Splitting’ Procedure for Digital Image Correlation on Discontinuous Displacement Fields
,”
Exp. Mech.
,
50
(
3
), pp.
353
364
. 10.1007/s11340-009-9220-2
109.
Nguyen
,
T. L.
,
Hall
,
S. A.
,
Vacher
,
P.
, and
Viggiani
,
G.
,
2011
, “
Fracture Mechanisms in Soft Rock: Identification and Quantification of Evolving Displacement Discontinuities by Extended Digital Image Correlation
,”
Tectonophysics
,
503
(
1–2
), pp.
117
128
. 10.1016/j.tecto.2010.09.024
110.
Tomičevć
,
Z.
,
Hild
,
F.
, and
Roux
,
S.
,
2013
, “
Mechanics-Aided Digital Image Correlation
,”
J. Strain Anal. Eng. Des.
,
48
(
5
), pp.
330
343
. 10.1177/0309324713482457
111.
Hassan
,
G. M.
,
MacNish
,
C.
, and
Dyskin
,
A.
, “
Extending Digital Image Correlation to Reconstruct Displacement and Strain Fields Around Discontinuities in Geomechanical Structures Under Deformation
,”
2015 IEEE Winter Conference on the Proceedings of the Applications of Computer Vision (WACV), IEEE
,
New York
, pp.
710
717
. 10.1109/wacv.2015.100
112.
Lykotrafitis
,
G.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
,
2006
, “
Particle Velocimetry and Photoelasticity Applied to the Study of Dynamic Sliding Along Frictionally-Held Bimaterial Interfaces: Techniques and Feasibility
,”
Exp. Mech.
,
46
(
2
), pp.
205
216
. 10.1007/s11340-006-6418-4
113.
Fialko
,
Y.
,
2015
, “
Fracture and Frictional Mechanics: Theory
,”
Treatise Geophys.
,
4
, pp.
73
91
. 10.1016/B978-0-444-53802-4.00071-3
114.
Jiang
,
J.
, and
Lapusta
,
N.
,
2016
, “
Deeper Penetration of Large Earthquakes on Seismically Quiescent Faults
,”
Science
,
352
(
6291
), pp.
1293
1297
. 10.1126/science.aaf1496
115.
Brune
,
J. N.
,
Henyey
,
T. L.
, and
Roy
,
R. F.
,
1969
, “
Heat Flow, Stress, and Rate of Slip Along the San Andreas Fault, California
,”
J. Geophys. Res. Solid Earth
,
74
(
15
), pp.
3821
3827
. 10.1029/JB074i015p03821
116.
Heaton
,
T. H.
,
1990
, “
Evidence for and Implications of Self-Healing Pulses of Slip in Earthquake Rupture
,”
Phys. Earth Planet. Inter.
,
64
(
1
), pp.
1
20
. 10.1016/0031-9201(90)90002-F
117.
Zheng
,
G.
, and
Rice
,
J. R.
,
1998
, “
Conditions Under Which Velocity-Weakening Friction Allows a Self-Healing Versus a Cracklike Mode of Rupture
,”
Bull. Seismol. Soc. Am.
,
88
(
6
), pp.
1466
1483
.
118.
Ben-Zion
,
Y.
,
2001
, “
Dynamic Ruptures in Recent Models of Earthquake Faults
,”
J. Mech. Phys. Solids
,
49
(
9
), pp.
2209
2244
. 10.1016/S0022-5096(01)00036-9
119.
Kanamori
,
H.
, and
Rivera
,
L.
,
2006
,
Earthquakes: Radiated Energy and the Physics of Faulting
,
American Geophysical Union
,
Washington, DC
, pp.
3
13
.
120.
Shi
,
Z.
,
Ben-Zion
,
Y.
, and
Needleman
,
A.
,
2008
, “
Properties of Dynamic Rupture and Energy Partition in a Solid With a Frictional Interface
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
5
24
. 10.1016/j.jmps.2007.04.006
121.
Noda
,
H.
,
Dunham
,
E. M.
, and
Rice
,
J. R.
,
2009
, “
Earthquake Ruptures With Thermal Weakening and the Operation of Major Faults at Low Overall Stress Levels
,”
J. Geophys. Res. Solid Earth
,
114
(
B7
). 10.1029/2008JB006143
122.
Noda
,
H.
, and
Lapusta
,
N.
,
2013
, “
Stable Creeping Fault Segments can Become Destructive as a Result of Dynamic Weakening
,”
Nature
,
493
(
7433
), pp.
518
521
. 10.1038/nature11703
123.
Dieterich
,
J. H.
,
2007
,
Treatise on Geophysics
, 2nd ed.,
Elsevier
,
Oxford
, pp.
93
110
.
124.
Dieterich
,
J. H.
,
1979
, “
Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations
,”
J. Geophys. Res. Solid Earth
,
84
(
B5
), pp.
2161
2168
. 10.1029/JB084iB05p02161
125.
Dieterich
,
J. H.
,
1981
,
Constitutive Properties of Faults with Simulated Fault Gouge. In Mechanical Behavior of Crustal Rocks: The Handin
, Vol.
24
,
AGU
,
Washington
, pp.
103
120
.
126.
Ruina
,
A.
,
1983
, “
Slip Instability and State Variable Friction Laws
,”
J. Geophys. Res. Solid Earth
,
88
(
B12
), pp.
10359
10370
. 10.1029/JB088iB12p10359
127.
Blanpied
,
M.
,
Lockner
,
D.
, and
Byerlee
,
J.
,
1991
, “
Fault Stability Inferred From Granite Sliding Experiments at Hydrothermal Conditions
,”
Geophys. Res. Lett.
,
18
(
4
), pp.
609
612
. 10.1029/91GL00469
128.
Blanpied
,
M. L.
,
Lockner
,
D. A.
, and
Byerlee
,
J. D.
,
1995
, “
Frictional Slip of Granite at Hydrothermal Conditions
,”
J. Geophys. Res. Solid Earth
,
100
(
B7
), pp.
13045
13064
. 10.1029/95JB00862
129.
Marone
,
C.
,
1998
, “
Laboratory-derived Friction Laws and Their Application to Seismic Faulting
,”
Annu. Rev. Earth Planet. Sci.
,
26
(
1
), pp.
643
696
. 10.1146/annurev.earth.26.1.643
130.
Kato
,
N.
, and
Tullis
,
T. E.
,
2001
, “
A Composite Rate-and State-Dependent Law for Rock Friction
,”
Geophys. Res. Lett.
,
28
(
6
), pp.
1103
1106
. 10.1029/2000GL012060
131.
Kato
,
N.
, and
Tullis
,
T. E.
,
2003
, “
Numerical Simulation of Seismic Cycles With a Composite Rate-and State-Dependent Friction law
,”
Bull. Seismol. Soc. Am.
,
93
(
2
), pp.
841
853
. 10.1785/0120020118
132.
Lu
,
X.
,
2009
, “
Combined Experimental and Numerical Study of Spontaneous Dynamic Rupture on Frictional Interfaces
,”
Ph.D. thesis, Dissertation
,
California Institute of Technology
,
Pasadena, CA
.
133.
Goldsby
,
D. L.
, and
Tullis
,
T. E.
,
2011
, “
Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates
,”
Science
,
334
(
6053
), pp.
216
218
. 10.1126/science.1207902
134.
Rice
,
J. R.
,
2006
, “
Heating and Weakening of Faults During Earthquake Slip
,”
J. Geophys. Res. Solid Earth
,
111
(
B5
), p.
B05311
.
135.
Beeler
,
N. M.
,
Tullis
,
T. E.
, and
Goldsby
,
D. L.
,
2008
, “
Constitutive Relationships and Physical Basis of Fault Strength Due to Flash Heating
,”
J. Geophys. Res. Solid Earth
,
113
(
B1
). 10.1029/2007JB004988
136.
Dieterich
,
J. H.
, and
Kilgore
,
B. D.
,
1996
, “
Imaging Surface Contacts: Power Law Contact Distributions and Contact Stresses in Quartz, Calcite, Glass and Acrylic Plastic
,”
Tectonophysics
,
256
(
1
), pp.
219
239
. 10.1016/0040-1951(95)00165-4
137.
Noda
,
H.
,
Lapusta
,
N.
, and
Rice
,
J. R.
,
2011
,
Springer Series in Geomechanics and Geoengineering
,
R. I.
Borja
, ed.,
Springer
,
Berlin
, pp.
149
152
.
138.
Thomas
,
M. Y.
,
Lapusta
,
N.
,
Noda
,
H.
, and
Avouac
,
J.-P.
,
2014
, “
Quasi-Dynamic Versus Fully Dynamic Simulations of Earthquakes and Aseismic Slip With and Without Enhanced Coseismic Weakening
,”
J. Geophys. Res. Solid Earth
,
119
(
3
), pp.
1986
2004
. 10.1002/2013JB010615
139.
Lapusta
,
N.
,
Rice
,
J. R.
,
Ben-Zion
,
Y.
, and
Zheng
,
G.
,
2000
, “
Elastodynamic Analysis for Slow Tectonic Loading with Spontaneous Rupture Episodes on Faults with Rate-and State-Dependent Friction
,”
J. Geophys. Res. Solid Earth
,
105
(
B10
), pp.
23765
23789
. 10.1029/2000JB900250
140.
Gori
,
M.
,
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2019
, “
Nucleation, Slow Slip, and Dynamic Rupture Enabled by a Fluid-Injection Experimental Setup With Diagnostics Across Multiple Temporal Scales
,”
manuscript in preparation
.
141.
Abraham
,
F. F.
,
Walkup
,
R.
,
Gao
,
H.
,
Duchaineau
,
M.
,
De La Rubia
,
T. D.
, and
Seager
,
M.
,
2002
, “
Simulating Materials Failure by Using up to one Billion Atoms and the World's Fastest Computer: Brittle Fracture
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
9
), pp.
5777
5782
. 10.1073/pnas.062012699
142.
Buehler
,
M. J.
,
Abraham
,
F. F.
, and
Gao
,
H.
,
2003
, “
Hyperelasticity Governs Dynamic Fracture at a Critical Length Scale
,”
Nature
,
426
(
6963
), p.
141
. 10.1038/nature02096
143.
Marder
,
M.
,
2006
, “
Supersonic Rupture of Rubber
,”
J. Mech. Phys. Solids
,
54
(
3
), pp.
491
532
. 10.1016/j.jmps.2005.10.002
144.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
1957
,
Elements of Gasdynamics
,
Wiley
,
New York
.
145.
Singh
,
R. P.
, and
Parameswaran
,
V.
,
2003
, “
An Experimental Investigation of Dynamic Crack Propagation in a Brittle Material Reinforced with a Ductile Layer
,”
Opt. Lasers Eng.
,
40
(
4
), pp.
289
306
. 10.1016/S0143-8166(02)00089-1
146.
Wu
,
H.
,
Ma
,
G.
, and
Xia
,
Y.
,
2004
, “
Experimental Study of Tensile Properties of PMMA at Intermediate Strain Rate
,”
Mater. Lett.
,
58
(
29
), pp.
3681
3685
. 10.1016/j.matlet.2004.07.022
147.
Richeton
,
J.
,
Schlatter
,
G.
,
Vecchio
,
K.
,
Rémond
,
Y.
, and
Ahzi
,
S.
,
2005
, “
A Unified Model for Stiffness Modulus of Amorphous Polymers Across Transition Temperatures and Strain Rates
,”
Polymer
,
46
(
19
), pp.
8194
8201
. 10.1016/j.polymer.2005.06.103
148.
Mulliken
,
A.
, and
Boyce
,
M.
,
2006
, “
Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1331
1356
. 10.1016/j.ijsolstr.2005.04.016
149.
Fleck
,
N. A.
,
Stronge
,
W.
, and
Liu
,
J.
,
1990
, “
High Strain-Rate Shear Response of Polycarbonate and Polymethyl Methacrylate
,”
Proc. R. Soc. London, Ser. A
,
429
(
1877
), pp.
459
479
. 10.1098/rspa.1990.0069
150.
Schapery
,
R. A.
,
1965
, “
A Method of Viscoelastic Stress Analysis Using Elastic Solutions
,”
J. Franklin Inst.
,
279
(
4
), pp.
268
289
. 10.1016/0016-0032(65)90339-X
151.
Knauss
,
W.
, and
Zhu
,
W.
,
2002
, “
Nonlinearly Viscoelastic Behavior of Polycarbonate. I. Response Under Pure Shear
,”
Mech. Time-Depend. Mater.
,
6
(
3
), pp.
231
269
. 10.1023/A:1016203131358
152.
Rosakis
,
A. J.
, and
Ravi-Chandar
,
K.
,
1986
, “
On Crack-Tip Stress State: an Experimental Evaluation of Three-Dimensional Effects
,”
Int. J. Solids Struct.
,
22
(
2
), pp.
121
134
. 10.1016/0020-7683(86)90002-8
153.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2019
, “
Spatiotemporal Properties of Sub-Rayleigh and Supershear Ruptures Inferred From Full-Field Dynamic Imaging of Laboratory Experiments
,”
J. Geophys. Res.
You do not currently have access to this content.