Approximate elasticity solutions for prediction of the displacement, stress, and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width and subjected to uniform axial extension and uniform temperature change were developed earlier by the authors. In the present paper, the authors have extended these solutions to treat bending deformation. Bending and torsion moments are combined to yield a deformation state without twisting curvature and with transverse curvature due only to the laminate Poisson effect. This state of deformation is termed anticlastic bending. The approximate elasticity solution for this bending deformation is shown to recover laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free edge and planes between lamina of +θ and –θ orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. Finally, the solution was exercised to determine the dimensions of the boundary layer in bending for very large numbers of layers.

References

1.
Pipes
,
R. B.
, and
Pagano
,
N. J.
,
1974
, “
Interlaminar Stresses in Composite Laminates—An Approximate Elasticity Solution
,”
ASME J. Appl. Mech.
,
41
, pp.
668
672
.10.1115/1.3423368
2.
Pipes
,
R. B.
,
Goodsell
,
J.
,
Ritchey
,
A. J.
,
Dustin
,
J.
, and
Gosse
,
J.
,
2010
, “
Interlaminar Stresses in Composite Laminates: Thermoelastic Deformation
,”
Compos. Sci. Technol.
,
70
, pp.
1605
1611
.10.1016/j.compscitech.2010.05.026
3.
Pipes
,
R. B.
, and
Pagano
,
N. J.
,
1970
, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
,
4
, pp.
538
548
.10.1177/002199837000400409
4.
Pagano
,
N. J.
, and
Pipes
,
R. B.
,
1971
, “
The Influence of Stacking Sequence on Laminate Strength
,”
J. Compos. Mater.
,
5
, pp.
50
57
.10.1177/002199837100500105
5.
Pagano
,
N. J.
, and
Pipes
,
R. B.
,
1973
, “
Some Observations on the Interlaminar Strength of Composite Laminates
,”
Int. J. Mech. Sci.
,
15
, pp.
679–688
.10.1016/0020-7403(73)90099-4
6.
Mittelstedt
,
C.
and
Becker
,
W.
,
2007
, “
Free-Edge Effects in Composite Laminates
,”
ASME Appl. Mech. Rev.
,
60
, pp.
217
245
.10.1115/1.2777169
7.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates: Part 1—Free-Edge Stress Singularities
,”
ASME J. Appl. Mech.
,
49
, pp.
541
548
.10.1115/1.3162514
8.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates: Part 2—Free-Edge Stress Solutions and Basic Characteristics
,”
ASME J. Appl. Mech.
,
49
, pp.
549
560
.10.1115/1.3162521
9.
Dustin
,
J. S.
,
2012
, “
Stress and Strain Field Singularities, Micro-Cracks, and Their Role in Failure Initiation at the Composite Laminate Free Edge
,” Ph.D. dissertation, Purdue University, West Lafayette, IN.
10.
Salamon
,
N. J.
,
1978
, “
Interlaminar Stresses in a Layered Composite Laminate in Bending
,”
Fibre Sci. Tech.
,
11
, pp.
305
317
.10.1016/0015-0568(78)90020-9
11.
Chan
,
W. S.
, and
Ochoa
,
O. O.
,
1987
, “
An Integrated Finite Element Model of Edge-Delamination Analysis for Laminates Due to Tension, Bending, and Torsion Loads
,” in
Proceedings AIAA/ASME/AHS 28th Structures
, Structural Dynamics, and Material (SDM) Conference, Monterey, CA, April 6–8,
AIAA
Paper No. 87-0704CP.10.2514/6.1987-704
12.
Murthy
,
P. L. N.
, and
Chamis
,
C. C.
,
1989
, “
Free-Edge Delamination: Laminate Width and Loading Conditions Effects
,”
J. Comp. Tech. Res.
,
11
(
1
), pp.
15
22
.10.1520/CTR10144J
13.
Ye
,
L.
,
1990
, “
Some Characteristics of Distributions of Free-Edge Interlaminar Stresses in Composite Laminates
,”
Int. J. Solids Struct.
,
26
, pp.
331
351
.10.1016/0020-7683(90)90044-V
14.
Bar-Yoseph
,
P.
, and
Ben-David
,
D.
,
1995
, “
Free-Edge Effects in Unsymmetrically Laminated Composite Plates
,”
Compos. Struct.
,
30
, pp.
13
23
.10.1016/0263-8223(94)00013-1
15.
Yi
,
S.
,
Ahmad
,
M. F.
, and
Hilton
,
H. H.
,
1998
, “
Nonlinear Viscoelastic Stress Singularities Near Free Edges of Unsymmetrically Laminated Composites
,”
Int. J. Solids Struct.
,
35
, pp.
3221
3237
.10.1016/S0020-7683(98)00022-5
16.
Armanios
,
E. A.
, and
Li
,
J.
,
1991
, “
Interlaminar Stress Predictions for Laminated Composites Under Bending, Torsion and Their Combined Effect
,”
Compos. Eng.
,
1
(
5
), pp.
277
291
.10.1016/0961-9526(91)90009-H
17.
Li
,
J.
, and
Armanios
,
E. A.
,
1994
, “
Influence of Free-Edge Delaminations on the Extension-Twist Coupling of Elastically Tailored Composite Laminates
,”
Math. Comput. Model.
,
19
(
3/4
), pp.
89
107
.10.1016/0895-7177(94)90059-0
18.
Kassapoglou
,
C.
1990
, “
Determination of Interlaminar Stresses in Composite Laminates Under Combined Loads
,”
J. Reinf. Plast. Compos.
,
9
, pp.
33
58
.10.1177/073168449000900103
19.
Yin
,
W. L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting, Part I: A Stress-Function-Based Variational Approach
,”
ASME J. Appl. Mech.
,
61
, pp.
410
415
.10.1115/1.2901459
20.
Yin
,
W. L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting, Part II: Eigenfunction Analysis and the Results for Symmetric Laminates
,”
ASME J. Appl. Mech.
,
61
, pp.
416
421
.10.1115/1.2901460
21.
Lin
,
C. C.
,
Hsu
,
C. Y.
, and
Ko
,
C. C.
,
1995
, “
Interlaminar Stresses in General Laminates With Straight Edges
,”
AIAA J.
,
33
, pp.
1471
1476
.10.2514/3.12569
22.
Kim
,
T.
, and
Atluri
,
S. N.
,
1994
, “
Interlaminar Stresses in Composite Laminates Under Out-of-Plane Shear/Bending
,”
AIAA J.
,
32
, pp.
1700
1708
.10.2514/3.12162
23.
Cho
,
M.
, and
Kim
,
H. S.
,
2000
, “
Iterative Free-Edge Stress Analysis of Composite Laminates Under Extension, Bending, Twisting and Thermal Loadings
,”
Int. J. Solids Struct.
,
37
, pp.
435
459
.10.1016/S0020-7683(99)00014-1
24.
Zhu
,
C.
, and
Lam
,
Y. C.
,
1998
, “
A Rayleigh-Ritz Solution for Local Stresses in Composite Laminates
,”
Compos. Sci. Technol.
,
58
, pp.
447
461
.10.1016/S0266-3538(97)00168-1
25.
Pagano
,
N. J.
,
1978
, “
Stress Fields in Composite Laminates
,”
Int. J. Solids Struct.
,
14
, pp.
385
400
.10.1016/0020-7683(78)90020-3
26.
Hyer
,
M. W.
, and
Bhavani
,
P. C.
,
1984
, “
Suppression of Anticlastic Curvature in Isotropic and Composite Plates
,”
Int. J. Solids Struct.
,
20
(
6
), pp.
553
570
.10.1016/0020-7683(84)90027-1
27.
Lekhnitskii
,
S. G.
,
1963
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day, Inc.
,
San Francisco
, pp.
107
108
.
28.
Abaqus Theory Manual (v. 6.12), 2012, Dassault Systèmes Simulia Corp., Providence, RI.
29.
Pagano
,
N. J.
,
1974
, “
On the Calculation of Interlaminar Normal Stress in Composite Laminates
,”
J. Compos. Mater.
,
8
, pp.
65
82
.10.1177/002199837400800106
You do not currently have access to this content.