Abdominal Aortic Aneurysms (AAA) is a form of vascular disease causing focal enlargement of abdominal aorta. It affects a large part of population and has up to 90% mortality rate. Since risks from open surgery or endovascular repair outweighs the risk of AAA rupture, surgical treatments are not recommended with AAA less than 5.5cm in diameter. Recent clinical recommendations suggest that people with small aneurysms should be examined 3∼36 months depending on size to get information about morphological changes. While advances in biomechanics provide state-of-the-art spatial estimates of stress distributions of AAA, there are still limitations in modeling its time evolution. Thus, there is no biomechanical framework to utilize such information from a series of medical images that would aid physicians in detecting small aneurysms with high risk of rupture. For the present study, we use series of CT images of small AAAs taken at different times to model and predict the spatio-temporal evolution of AAA. This is achieved using sparse local Gaussian process regression.

This content is only available via PDF.
You do not currently have access to this content.