Aerospace components require structural materials that have superior mechanical properties and can withstand severe environmental conditions, such as ultra-high temperature, high pressure, or water vapor. Ceramic-matrix composites (CMCs), capable of maintaining excellent strength and fracture toughness at high temperatures are prime candidate materials for aerospace applications. This research effort investigates creep behavior of N610/LaPO4/Al2O3 composite consisting of a porous alumina matrix reinforced with Nextel 610 fibers coated with monazite in a symmetric cross-ply (0°/90°/0°/90°)s orientation. Tensile creep was examined at temperatures in the 900-1100°C range for creep stresses ranging from 40 to 150 MPa. At 900°C primary and secondary creep regimes were observed. At temperatures above 900°C, the composite exhibited primary, secondary and tertiary creep. Minimum creep rate was reached in all tests. Creep rates accelerated with increasing temperature and creep stress. Creep run-out was defined as 100 h at creep stress. At 900°C the run-out stress was 120 MPa. Monazite coating resulted in improved creep resistance at 900°C. Creep performance deteriorated rapidly at temperatures above 900°C.

1.
Zawada
L. P.
,
Staehler
J.
, and
Steel
S.
,
2003
, “
Consequence of Intermittent Exposure to Moisture and Salt Fog on the High-Temperature Fatigue Durability of Several Ceramic-Matrix Composites
,”
J. American Ceramic Society
,
86
(
8
), pp.
1282
1291
.
2.
Prewo
K. M.
, and
Batt
J. A.
,
1988
, “
The Oxidative Stability of Carbon Fibre Reinforced Glass-Matrix Composites
,”
J. Materials Science
,
23
, pp.
523
527
.
3.
Mah
T.
,
Hecht
N. L.
,
McCullum
D. E.
,
Hoenigman
J. R.
,
Kim
H. M.
,
Katz
A. P.
, and
Lipsitt
H. A.
,
1984
, “
Thermal Stability of SiC Fibres (Nicalon)
,”
J. Materials Science
,
19
, pp.
1191
1201
.
4.
More
K. L.
,
Tortorelli
P. F.
,
Ferber
M. K.
, and
Keiser
J. R.
,
2000
, “
Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures
,”
J. American Ceramic Society
,
83
(
1
), pp.
211
213
.
5.
More, K. L., Tortorelli, P. F., Ferber, M. K., Walker, L. R, Keiser, J. R., Brentnall, W. D., Miralya, N., and Price, J. B., 1999, “Exposure of Ceramic and Ceramic-Matrix Composites in Simulated and Actual Combustor Environments,” Proc., International Gas Turbine and Aerospace Congress, Paper No. 99-GT-292.
6.
Ferber, M. K., Lin, H. T., and Keiser, J. R., 2000, “Oxidation Behavior of Non-Oxide Ceramics in a High-Pressure, High-Temperature Steam Environment, Mechanical, Thermal, and Environmental Testing and Performance of Ceramic Composites and Components,” ASTM STP 1392, M. G. Jenkins et al., eds., American Society for Testing and Materials, pp. 210–215.
7.
Hermes
E. E.
, and
Kerans
R. J.
,
1988
, “
Degradation of Non-Oxide Reinforcement and Oxide Matrix Composites
,”
Proc., Symposium of Materials Research Society
,
125
, pp.
73
78
.
8.
Szweda, A., Millard, M. L., and Harrison, M. G., 1997, Fiber-Reinforced Ceramic-Matrix Composite Member and Method for Making, U. S. Pat. No. 5 601 674.
9.
Sim
S. M.
, and
Kerans
R. J.
,
1992
, “
Slurry Infiltration and 3-D Woven Composites
,”
Ceramic Engineering and Science Proceedings
,
13
(
9–10
) pp.
632
641
.
10.
Moore
E. H.
,
Mah
T.
, and
Keller
K. A.
,
1994
, “
3D Composite Fabrication through Matrix Slurry Pressure Infiltration
,”
Ceramic Engineering and Science Proceedings
,
15
(
4
), pp.
113
120
.
11.
Lewis, M. H., Cain, M. G., Doleman, P., Razzell, A. G., and Gent, J., 1995, “Development of Interfaces in Oxide and Silicate Matrix Composites,” High-Temperature Ceramic- Matrix Composites II: Manufacturing and Materials Development, A. G. Evans et al., eds. American Ceramic Society, pp. 41–52.
12.
Lange
F. F.
,
Tu
W. C.
, and
Evans
A. G.
,
1995
, “
Processing of Damage-Tolerant, Oxidation-Resistant Ceramic Matrix Composites by a Precursor Infiltration and Pyrolysis Method
,”
Materials Science and Engineering A
,
A195
, pp.
145
150
.
13.
Lunderberg, R., and Eckerbom, L., 1995, “Design and Processing of All-Oxide Composites,” High-Temperature Ceramic-Matrix Composites II: Manufacturing and Materials Development, A. G. Evans et al., eds. American Ceramic Society, pp. 95–104.
14.
Mouchon
E.
, and
Colomban
P.
,
1995
, “
Oxide Ceramic Matrix/Oxide Fiber Woven Fabric Composites Exhibiting Dissipative Fracture Behavior
,”
Composites
,
26
, pp.
175
182
.
15.
Morgan
P. E. D.
, and
Marshall
D. B.
,
1995
, “
Ceramic Composites of Monazite and Alumina
,”
J. American Ceramic Society
,
78
(
6
), pp.
1553
1563
.
16.
Tu
W. C.
,
Lange
F. F.
, and
Evans
A. G.
,
1996
, “
Concept for a Damage-Tolerant Ceramic Composite with Strong Interfaces
,”
J. American Ceramic Society
,
79
(
2
), pp.
417
424
.
17.
Kerans
R. J.
,
Hay
R. S.
,
Pagano
N. J.
, and
Parthasarathy
T. A.
,
1989
, “
The Role of the Fiber-Matrix Interface in Ceramic Composites
,”
Bulletin American Ceramic Society
,
68
(
2
), pp.
429
442
.
18.
Evans
A. G.
, and
Zok
F. W.
,
1994
, “
Review: the Physics and Mechanics of Fiber-Reinforced Brittle Matrix Composites
,”
J. Materials Science
,
29
, pp.
3857
3896
.
19.
Kerans
R. J.
, and
Parthasarathy
T. A.
,
1999
, “
Crack Deflection in Ceramic Composites and Fiber Coating Design Criteria
,”
Composites: Part A
,
30
, pp.
521
524
.
20.
Morgan
P. E. D.
, and
Marshall
D. B.
,
1993
, “
Functional interfaces for oxide/oxide composites
,”
Materials Science and Engineering
,
A162
, pp.
15
25
.
21.
Morgan
P. E. D.
,
Marshall
D. B.
, and
Housley
R. M.
,
1995
, “
High-Temperature Stability of Monazite-Alumina Composites
,”
Materials Science and Engineering
,
A195
, pp.
215
222
.
22.
Kerans
R. J.
,
Hay
R. S.
,
Parthasarathy
T. A.
, and
Cinibulk
M. K.
,
2002
, “
Interface Design for Oxidation-Resistant Ceramic Composites
,”
J. American Ceramic Society
,
85
(
11
), pp.
2599
2632
.
23.
Keller
K. A.
,
Mah
T. I.
,
Parthasarathy
T. A.
,
Boakye
E. E.
,
Mogilevsky
P.
, and
Cinibulk
M. K.
,
2003
, “
Effectiveness of Monazite Coatings in Oxide/Oxide Composites after Long-Term Exposure at High Temperature
,”
J. American Ceramic Society
,
86
(
2
), pp.
325
32
.
24.
Boakye
E. E.
,
Petry
M. D.
,
Hay
R. S.
, and
Douglas
L. M.
,
2000
, “
Monazite Coatings on Nextel 720, 610, and Tyranno-SA Fiber Tows: Effects of Precursers on Fiber Strength
,”
Ceramic Engineering and Science Proceedings
,
21
(
4
), pp.
229
36
.
25.
Wilson
D. M.
, and
Visser
L. R.
,
2001
, “
High Performance Oxide Fibers for Metal and Ceramic Composites
,”
Composites: Part A
,
32
, pp.
1143
1153
.
26.
Zawada
L. P.
,
Hay
R. S.
,
Lee
S. S.
, and
Staehler
J.
,
2003
, “
Characterization and High-Temperature Mechanical Behavior of an Oxide/Oxide Composite
,”
J. American Ceramic Society
,
86
(
6
), pp.
981
90
.
27.
Casas
L.
, and
Martinez-Esnaola
J. M.
,
2004
, “
Microstructural Characterization of an Alumina/Mullite Composite Tested in Creep
,”
Materials Science and Engineering
,
A368
, pp.
139
44
.
This content is only available via PDF.
You do not currently have access to this content.