Abstract

3D reconstruction technology is used in a wide variety of applications. Currently, automatically creating accurate pointclouds for large parts requires expensive hardware. We are interested in using low-cost depth cameras mounted on commonly available industrial robots to create accurate pointclouds for large parts automatically. Manufacturing applications require fast cycle times. Therefore, we are interested in speeding up the 3D reconstruction process. We present algorithmic advances in 3D reconstruction that achieve a sub-millimeter accuracy using a low-cost depth camera. Our system can be used to determine a pointcloud model of large and complex parts. Advances in camera calibration, cycle time reduction for pointcloud capturing, and uncertainty estimation are made in this work. We continuously capture point-clouds at an optimal camera location with respect to part distance during robot motion execution. The redundancy in pointclouds achieved by the moving camera significantly reduces errors in measurements without increasing cycle time. Our system produces sub-millimeter accuracy.

This content is only available via PDF.
You do not currently have access to this content.