This work presents the numerical modeling of two-dimensional stable corrosion pit growth by solving the Laplace equation which defines the electric potential within the electrolyte. Microstructural features representative of a 316 stainless steel provides the matrix in which the pit grows. Real microstructural features are incorporated into the computational model. The objective is to determine the influence of the microstructure, specifically crystallographic orientation, on the shape of the pit as it grows over time. The high-resolution definition of the microstructure is obtained by the orientation image microscopy (OIM) technique and is incorporated into the finite element model through a grid-based interpolation functionality. The steel-electrolyte corrosion front movement is simulated with the help of the arbitrary Lagrangian-Eulerian (ALE) meshing technique. The front speed, or the material dissolution rate, is approximated with the use of a Butler-Volmer relationship that relates the dissolution current density to the applied overpotential. The results show that small fluctuations (5–10%) in corrosion potential due to the changing crystal orientation ahead of the corrosion front result in variations in pit shape similar to experimental observations reported in the literature.

This content is only available via PDF.
You do not currently have access to this content.