Fracking (fracturing) is of great importance for enhancing oil and gas production from low permeability reservoirs. Since in fracking fluid, suspension of sand particles are used, the erosion failure of fracturing equipment has become an increasing concern. Accordingly, investigation of erosion of commonly used fittings such as ball seats in order to decrease its adverse consequences has attracted considerable attentions. Although the erosion wear of gas-solid flows in the pipe sudden expansion was investigated in the literature, the effect of particle size, ball seat shape and the contraction configurations on the erosion-induced wear is not fully understood. This study is aimed to explore the most erosion-resistant configuration of a ball seat under various operational conditions. A CFD model is used and a wide range of geometries are investigated. The studied configurations are categorized in three main groups including single cone, double cone and curved cone. In each category, different cone angles and curve styles are considered.

The results showed that, among the single cone ball seats, the cone angle of 15° is the most erosion-resistant configuration. It was also shown that the third-order curve style cone has the best erosion performance.

This content is only available via PDF.
You do not currently have access to this content.