This paper considers the problem of deploying an arbitrary multi-agent system in a desired formation over an n-dimensional motion space. Each agent is considered to be a ball and collision avoidance is addressed. System evolution in ℝn is decomposed into n one dimensional motion problems, where evolution of the agents qth (q = 1, 2, 3) components are independently guided by two q-leaders. The remaining agents are considered q-followers, updating the qth component of their positions by local interactions with two neighboring q-agents. Communications among the q-agents are weighted by values consistent with the qth position components of agents in the desired configuration. This paper shows how specifying certain constraints on q-leader motion can address the problem of inter-agent collision avoidance when followers acquire their desired positions only by local communication.
- Dynamic Systems and Control Division
Deployment of an Arbitrary Distribution of a Multi-Agent System With Finite Size on a Desired Formation
Rastgoftar, H, & Atkins, EM. "Deployment of an Arbitrary Distribution of a Multi-Agent System With Finite Size on a Desired Formation." Proceedings of the ASME 2016 Dynamic Systems and Control Conference. Volume 2: Mechatronics; Mechatronics and Controls in Advanced Manufacturing; Modeling and Control of Automotive Systems and Combustion Engines; Modeling and Validation; Motion and Vibration Control Applications; Multi-Agent and Networked Systems; Path Planning and Motion Control; Robot Manipulators; Sensors and Actuators; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamic Controls; Vehicle Dynamics and Traffic Control. Minneapolis, Minnesota, USA. October 12–14, 2016. V002T23A004. ASME. https://doi.org/10.1115/DSCC2016-9752
Download citation file: