Review Article

Appl. Mech. Rev. 2017;69(2):020801-020801-13. doi:10.1115/1.4036191.

A comprehensive review of current analytical models, experimental techniques, and influencing factors is carried out to highlight the current challenges in this area. The study of fluid–solid boundary conditions has been ongoing for more than a century, starting from gas–solid interfaces and progressing to that of the more complex liquid–solid case. Breakthroughs have been made on the theoretical and experimental fronts but the mechanism behind the phenomena remains a puzzle. This paper provides a review of the theoretical models, and numerical and experimental investigations that have been carried out till date. Probable mechanisms and factors that affect the interfacial discontinuity are also documented.

Commentary by Dr. Valentin Fuster
Appl. Mech. Rev. 2017;69(2):020802-020802-17. doi:10.1115/1.4036327.

With the use of lighter construction materials, more slender architectural designs, and open floor plans resulting in low damping, vibration serviceability has become a dominant design criterion for structural engineers worldwide. In principle, assessment of floor vibration serviceability requires a proper consideration of three key issues: excitation source, system, and receiver. Walking is usually the dominant human excitation for building floors. This paper provides a comprehensive review of a considerable number of references dealing with experimental measurement and mathematical modeling of dynamic forces induced by a single pedestrian. The historical development of walking force modeling—from single harmonic loads to extremely complex stochastic processes—is discussed. As a conclusion to this effort, it is suggested that less reliance should be made by the industry on the deterministic force models, since they have been shown to be overly conservative. Alternatively, due to the random nature of human walking, probabilistic force models seem to be more realistic, while more research is needed to achieve enough confidence to implement in design practice.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In