0
Review Article

Toward the Development of Knee Prostheses: Review of Current Active Devices

[+] Author and Article Information
Rafael R. Torrealba

Biomechanics and Mechatronics
Research Groups,
Department of Mechanics,
MEU Building, Of. MEU-320D,
Simón Bolívar University,
Caracas 1080A, Venezuela
e-mail: rtorrealba@usb.ve

Edgar D. Fonseca-Rojas

Biomechanics and Mechatronics
Research Groups,
Department of Mechanics,
ELE Building, Of. ELE-205,
Simón Bolívar University,
Caracas 1080A, Venezuela
e-mail: edgardfr@gmail.com

1Corresponding author.

Manuscript received October 29, 2017; final manuscript received March 3, 2019; published online May 13, 2019. Assoc. Editor: Thao (Vicky) Nguyen.

Appl. Mech. Rev 71(3), 030801 (May 13, 2019) (22 pages) Paper No: AMR-17-1078; doi: 10.1115/1.4043323 History: Received October 29, 2017; Revised March 03, 2019

This paper presents a thorough review of the initiatives carried out in the last 10 years toward the development of active knee prostheses (AKP) for transfemoral amputees. Three selection criteria were employed to filter the works to be considered in the review: (1) a prototype of the prosthesis is available; (2) the mechanical design, instrumentation, and control strategy of such a prototype have been presented in a scientific disclosure media; and (3) the prototype has been subjected to clinical assessment at least in a preliminary way. After applying such criteria, 16 projects were selected and further reviewed through a total of 31 scientific papers, considering the following six aspects: (1) actuators, (2) instrumentation, (3) control, (4) testing trials, (5) performance metrics, and (6) limitations. Then, in addition, the chronological appearance of the aforesaid papers is also shown and quantified regarding each of the previously mentioned issues, to initiate discussion on the related topics. Thus, the present review results in a specialized summary of all these developments in a structured format, offering additional understanding of the recent advances achieved in this field.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kapp, S. , and Miller, J. , 2009, “ Lower Limb Prosthetics,” Care of the Combat Amputee: Textbooks of Military Medicine, Government Printing Office, Washington, DC, pp. 553–580.
Van, D. , Linde, H. , Hofstad, C. J. , Guerts, A. C. H. , Postema, K. , Geertzen, J. H. B. , and Van Limbeek, J. , 2004, “ A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower Limb Prosthesis,” J. Rehabil. Res. Dev., 41(4), pp. 555–570. [PubMed]
Radcliffe, C. , 1977, “ Above Knee Prosthetics,” Prosthet. Orthot. Int., 1(3), pp. 146–160. [PubMed]
Näder, M. , and Näder, H. , 1993, Otto Bock Prostheses Compendium: Prostheses for Lower Limbs, Schiele & Schön GmbH, Berlin, Germany.
Staros, A. , 1964, “ The Principles of Swing-Phase Control: The Advantages of Fluid Mechanisms,” Prostheses, Braces Tech. Aids, 13, pp. 11–16.
Lewis, E. , 1965, “ Fluid-Control Knee Mechanisms: Clinical Considerations,” Bull. Prosthet. Res., 10, pp. 24–56.
Mauch, H. , 1968, “ Stance Control for Above-Knee Artificial Legs—Design Considerations in the S-N-S Knee,” Bull. Prosthet. Res., 10, pp. 61–72.
Flowers, W. , and Mann, R. , 1977, “ An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator,” ASME J. Biomech. Eng., 99(1), pp. 3–8. [CrossRef]
Darling, D. , 1978, “ Automatic Damping Profile Optimization for Computer Controlled Above-Knee Prostheses,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.
Grimes, D. , 1979, “ An Active Multi-Mode Above-Knee Prosthesis Controller,” Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.
Popovic, D. , and Schwirtlich, L. , 1988, “ Belgrade Active A/K Prosthesis,” Electrophysiological Kinesiology (International Congress Series No. 804), J. De Vries , ed., Excerpta Medica, Amsterdam, The Netherlands, pp. 337–343.
Dietl, H. , and Bargehr, H. , 1997, “ Der Einsatz Von Elektronik Bei Prothesen Zur Versorgung Der Unteren Extremitäten (the Application of Electronics in Prosthetics for Lower Extremities),” Med.-Orthopädische Tech., 117(1), pp. 31–35.
Winter, D. A. , 1990, Biomechanics and Motor Control of Human Movement, Wiley, New York.
Jaegers, S. M. , Arendzen, J. H. , and de Jongh, H. J. , 1995, “ Prosthetic Gait of Unilateral Transfemoral Amputees: A Kinematic Study,” Arch. Phys. Med. Rehabil., 76(8), pp. 736–743. [CrossRef] [PubMed]
Seroussi, R. E. , Gitter, A. , Czerniecki, J. M. , and Weaver, K. , 1996, “ Mechanical Work Adaptations of Above-Knee Amputee Ambulation,” Arch. Phys. Med. Rehabil., 77(11), pp. 1209–1214. [CrossRef] [PubMed]
Genin, J. J. , Bastien, G. J. , Franck, B. , Detrembleur, C. , and Willems, P. A. , 2008, “ Effect of Speed on the Energy Cost of Walking in Unilateral Traumatic Lower Limb Amputees,” Eur. J. Appl. Physiol., 103(6), pp. 655–663. [CrossRef] [PubMed]
Schmalz, T. , Blumentritt, S. , and Jarasch, R. , 2002, “ Energy Expenditure and Biomechanical Characteristics of Lower Limb Amputee Gait: The Influence of Prosthetic Alignment and Different Prosthetic Components,” Gait Posture, 16(3), pp. 255–263. [CrossRef] [PubMed]
Miller, W. C. , Deathe, A. B. , Speechley, M. , and Koval, J. , 2001, “ The Influence of Falling, Fear of Falling, and Balance Confidence on Prosthetic Mobility and Social Activity Among Individuals With a Lower Extremity Amputation,” Arch. Phys. Med. Rehabil., 82(9), pp. 1238–1244. [CrossRef] [PubMed]
Miller, W. C. , Speechley, M. , and Deathe, B. , 2001, “ The Prevalence and Risk Factors of Falling and Fear of Falling Among Lower Extremity Amputees,” Arch. Phys. Med. Rehabil., 82(8), pp. 1031–1037. [CrossRef] [PubMed]
Orendurff, M. S. , Segal, A. D. , Klute, G. K. , McDowell, M. L. , Pecoraro, J. A. , and Czerniecki, J. M. , 2006, “ Gait Efficiency Using the C-Leg,” J. Rehabil. Res. Dev., 43(2), pp. 239–246. [CrossRef] [PubMed]
Segal, A. D. , Orendurff, M. S. , Klute, G. K. , McDowell, M. L. , Pecoraro, J. A. , Shofer, J. , and Czerniecki, J. M. , 2006, “ Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg and Mauch SNS Prosthetic Knees,” J. Rehabil. Res. Dev., 43(7), pp. 857–870. [CrossRef] [PubMed]
Seymour, R. , Engbretson, B. , Kott, K. , Ordway, N. , Brooks, G. , Crannell, J. , Hickernell, E. , and Wheeler, K. , 2007, “ Comparison Between the C-Leg Microprocessor-Controlled Prosthetic Knee and Non-Microprocessor Control Prosthetic Knees: A Preliminary Study of Energy Expenditure, Obstacle Course Performance, and Quality of Life Survey,” Prosthet. Orthot. Int., 31, pp. 51–61. [CrossRef] [PubMed]
Datta, D. , Heller, B. , and Howitt, J. , 2005, “ A Comparative Evaluation of Oxygen Consumption and Gait Pattern in Amputees Using Intelligent Prostheses and Conventionally Damped Knee Swing-Phase Control,” Clin. Rehabil., 19(4), pp. 398–403. [CrossRef] [PubMed]
Chin, T. , Sawamura, S. , Shiba, R. , Oyabu, H. , Nagakura, Y. , Takase, I. , Machida, K. , and Nakagawa, A. , 2003, “ Effect of an Intelligent Prosthesis (IP) on the Walking Ability of Young Transfemoral Amputees: Comparison of IP Users With Able-Bodied People,” Am. J. Phys. Med. Rehabil., 82(6), pp. 447–451. [PubMed]
Kaufman, K. R. , Levine, J. A. , Brey, R. H. , McCrady, S. K. , Padgett, D. J. , and Joyner, M. J. , 2008, “ Energy Expenditure and Activity of Transfemoral Amputees Using Mechanical and Microprocessor-Controlled Prosthetic Knees,” Arch. Phys. Med. Rehabil., 89(7), pp. 1380–1385. [CrossRef] [PubMed]
Hafner, B. J. , Willingham, L. L. , Buell, N. C. , Allyn, K. J. , and Smith, D. G. , 2007, “ Evaluation of Function, Performance, and Preference as Transfemoral Amputees Transition From Mechanical to Microprocessor Control of the Prosthetic Knee,” Arch. Phys. Med. Rehabil., 88(2), pp. 207–217. [CrossRef] [PubMed]
Blumentritt, S. T. , Schmalz, T. , and Jarasch, R. , 2009, “ Safety of C-Leg: Biomechanical Tests,” J. Prosthet. Orthot., 21(1), pp. 2–17. [CrossRef]
Kaufman, K. R. , Levine, J. A. , Brey, R. H. , Iverson, B. K. , McCrady, S. K. , Padgett, D. J. , and Joyner, M. J. , 2007, “ Gait and Balance of Transfemoral Amputees Using Passive Mechanical and Microprocessor-Controlled Prosthetic Knees,” Gait Posture, 26(4), pp. 489–493. [CrossRef] [PubMed]
Mâaref, K. , Martinet, N. , Grumillier, C. , Ghannouchi, S. , André, J. M. , and Paysant, J. , 2010, “ Kinematics in the Terminal Swing Phase of Unilateral Transfemoral Amputees: Microprocessor-Controlled Versus Swing-Phase Control Prosthetic Knees,” Arch. Phys. Med. Rehabil., 91(6), pp. 919–925. [CrossRef] [PubMed]
Johansson, J. L. , Sherrill, D. M. , Riley, P. O. , Bonato, P. , and Herr, H. , 2005, “ A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices,” Am. J. Phys. Med. Rehabil., 84(8), pp. 563–575. [CrossRef] [PubMed]
Burke, M. J. , Roman, V. , and Wright, V. , 1978, “ Bone and Joint Changes in Lower Limb Amputees,” Ann. Rheum. Dis., 37(3), pp. 252–254. [CrossRef] [PubMed]
Nolan, L. , Wit, A. , Dudziñski, K. , Lees, A. , Lake, M. , and Wychowañski, M. , 2003, “ Adjustments in Gait Symmetry With Walking Speeds in Trans-Femoral and Trans-Tibial Amputees,” Gait Posture, 17(2), pp. 142–151. [CrossRef] [PubMed]
Nolan, L. , and Lees, A. , 2000, “ The Functional Demands on the Intact Limb During Walking for Active Trans-Femoral and Trans-Tibial Amputees,” Prosthet. Orthot. Int., 24(2), pp. 117–125.
Ehde, D. M. , Smith, D. G. , Czerniecki, J. M. , Campbell, K. M. , Malchow, D. M. , and Robinson, L. R. , 2001, “ Back Pain as a Secondary Disability in Persons With Lower Limb Amputations,” Arch. Phys. Med. Rehabil., 82(6), pp. 731–734. [CrossRef] [PubMed]
Morgenroth, D. C. , Orendurff, M. S. , Shakir, A. , Segal, A. D. , Shofer, J. , and Czerniecki, J. M. , 2010, “ The Relationship Between Lumbar Spine Kinematics During Gait and Lowback Pain in Transfemoral Amputees,” Am. J. Phys. Med. Rehabil., 89(8), pp. 635–643. [CrossRef] [PubMed]
Norvell, D. C. , Czerniecki, J. M. , Reiber, G. E. , Maynard, C. , Pecoraro, J. A. , and Weiss, N. S. , 2005, “ The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees,” Arch. Phys. Med. Rehabil., 86(3), pp. 487–493. [CrossRef] [PubMed]
Waters, R. , Perry, J. , Antonelli, D. , and Hislop, H. , 1976, “ Energy Cost of Walking Amputees: The Influence of Level of Amputation,” J. Bone Jt. Surg., 58(1), pp. 42–46. [CrossRef]
Ziegler-Graham, K. , MacKenzie, E. J. , Ephraim, P. L. , Travison, T. G. , and Brookmeyer, R. , 2008, “ Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050,” Arch. Phys. Med. Rehabil., 89(3), pp. 422–429. [CrossRef] [PubMed]
Torrealba, R. R. , Fernández-López, G. , and Grieco, J. C. , 2008, “ Towards the Development of Knee Prostheses: Review of Current Researches,” Kybernetes, 37(9/10), pp. 1561–1576. [CrossRef]
Össur Dynamic Solutions, 2017, “ Power Knee,” Össur Dynamic Solutions, Össur, Iceland, accessed Apr. 12, 2019, http://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee
Lambrecht, B. G. A. , and Kazerooni, H. , 2009, “ Design of a Semi-Active Knee Prosthesis,” IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, May 12–17, pp. 639–645.
Freedom Innovations, 2012, “ First Neutrally Controlled, Powered Prosthetic Limb is 2,109 Steps Closer to Realization,” Freedom Innovations, Irvine, CA, accessed Apr. 12, 2019, http://www.freedom-innovations.com/first-neurally-controlled-powered-prosthetic-limb-is-2109-steps-closer-to-realization/
El-Sayed, A. M. , Hamzaid, N. A. , and Osman, N. A. A. , 2014, “ Technology Efficacy in Active Prosthetic Knees for Transfemoral Amputees: A Quantitative Evaluation,” Sci. World J., 2014, p. 297431. [CrossRef]
Windrich, M. , Grimmer, M. , Christ, O. , Rinderknecht, S. , and Beckerle, P. , 2016, “ Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions,” Biomed. Eng. OnLine, 15(3), pp. 1–19. [CrossRef]
Elery, T. , Rezazadeh, S. , Nesler, C. , Doan, J. , Zhu, H. , and Gregg, R. D. , 2018, “ Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis With High-Torque, Low-Impedance Actuators,” IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 21–25, pp. 1341–1347.
Dabiri, Y. , Najarian, S. , Eslami, M. R. , Zahedi, S. , Moser, D. , Shirzad, E. , and Moradihaghighat, R. , 2011, “ Simulation of the Effect of Amputation Level on Individual Muscle Forces of Transfemoral Amputees,” Biomed. Eng. Appl. Basis Commun., 23(05), pp. 369–376. [CrossRef]
Awad, M. , Dehghani, A. , Moser, D. , and Zahedi, S. , 2013, “ Dynamic Coupling Characteristics of a Semi-Active Knee Prosthesis,” 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Sydney, Australia, July 14–17, pp. 43–50.
Awad, M. I. , Dehghani-Sanij, A. A. , Moser, D. , and Zahedi, S. , 2016, “ Motor Electrical Damping for Back-Drivable Prosthetic Knee,” 11th France-Japan and 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th International Conference on Research and Education in Mechatronics (REM), Compiegne, France, June 15–17, pp. 348–353.
Pieringer, D. S. , Grimmer, M. , Russold, M. F. , and Riener, R. , 2017, “ Review of the Actuators of Active Knee Prostheses and Their Target Design Outputs for Activities of Daily Living,” IEEE International Conference on Rehabilitation Robotics (ICORR), London, July 17–20, pp. 1246–1253.
Hoover, C. D. , Fulk, G. D. , and Fite, K. B. , 2012, “ The Design and Initial Experimental Validation of an Active Myoelectric Transfemoral Prosthesis,” ASME J. Med. Devices, 6(1), p. 011005. [CrossRef]
Hoover, C. D. , Fulk, G. D. , and Fite, K. B. , 2013, “ Stair Ascent With a Powered Transfemoral Prosthesis Under Direct Myoelectric Control,” IEEE ASME Trans. Mechatronics, 18(3), pp. 1191–1200. [CrossRef]
Du, L. , Zhang, F. , Liu, M. , and Huang, H. , 2012, “ Toward Design of an Environment-Aware Adaptive Locomotion-Mode-Recognition System,” IEEE Trans. Biomed. Eng., 59(10), pp. 2716–2725. [CrossRef] [PubMed]
Liu, M. , Datseris, P. , and Huang, H. , 2011, “ A Prototype for Smart Prosthetic Legs: Analysis and Mechanical Design,” IEEE International Conference on Control, Robotics and Cybernetics, New Delhi, India, Mar. 19–21, pp. 139–143.
Fite, K. , Mitchell, J. , Sup, F. , and Goldfarb, M. , 2007, “ Design and Control of an Electrically Powered Knee Prosthesis,” IEEE Tenth International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, June 13–15, pp. 902–905.
Nadeau, S. , McFadyen, B. J. , and Malouin, F. , 2003, “ Frontal and Sagittal Plane Analyses of the Stair Climbing Task in Healthy Adults Aged Over 40 Years: What Are the Challenges Compared to Level Walking?,” Clin. Biomech., 18(10), pp. 950–959. [CrossRef]
Riener, R. , Rabuffetti, M. , and Frigo, C. , 1999, “ Joint Powers in Stair Climbing at Different Slopes,” IEEE International Conference on Engineering in Medicine and Biology, Atlanta, Georgia, Oct. 13–16, p. 530.
Sup, F. , Varol, H. A. , Mitchell, J. , Withrow, T. , and Goldfarb, M. , 2008, “ Design and Control of an Active Electrical Knee and Ankle Prosthesis,” IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, Oct. 19–22, pp. 523–528.
Sup, F. , Varol, H. A. , Mitchell, J. , Withrow, T. J. , and Goldfarb, M. , 2009, “ Self-Contained Powered Knee and Ankle Prosthesis: Initial Evaluation on a Transfemoral Amputee,” IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, June 23–26, pp. 638–644.
Ha, K. H. , Varol, H. A. , and Goldfarb, M. , 2010, “ Myoelectric Control of a Powered Knee Prosthesis for Volitional Movement During Non-Weight-Bearing Activities,” 32nd Annual IEEE EMBS International Conference, Buenos Aires, Argentina, August 31–September 4, pp. 3515–3518.
Lawson, B. E. , Varol, H. A. , and Goldfarb, M. , 2011, “ Standing Stability Enhancement With an Intelligent Powered Transfemoral Prosthesis,” IEEE Trans. Biomed. Eng., 58(9), pp. 2617–2624. [CrossRef] [PubMed]
Sup, F. , Varol, H. A. , and Goldfarb, M. , 2011, “ Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject,” IEEE Trans. Neural Syst. Rehabil. Eng., 19(1), pp. 71–78. [CrossRef] [PubMed]
Sup, F. , Varol, H. A. , Mitchell, J. , Withrow, T. J. , and Goldfarb, M. , 2009, “ Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis,” IEEE ASME Trans. Mechatron., 14(6), pp. 667–676. [CrossRef] [PubMed]
Vrieling, A. H. , Van Keeken, H. G. , Schoppen, T. , Otten, E. , Halbertsma, J. P. K. , Hof, A. L. , and Postema, K. , 2008, “ Uphill and Downhill Walking in Unilateral Lower Limb Amputees,” Gait Posture, 28(2), pp. 235–242. [CrossRef] [PubMed]
Lawson, B. E. , Varol, H. A. , Huff, A. , Erdemir, E. , and Goldfarb, M. , 2013, “ Control of Stair Ascent and Descent With a Powered Transfemoral Prosthesis,” IEEE Trans. Neural Syst. Rehabil. Eng., 21(3), pp. 466–473. [CrossRef] [PubMed]
Shultz, A. H. , Lawson, B. E. , and Goldfarb, M. , 2015, “ Running With a Powered Knee and Ankle Prosthesis,” IEEE Trans. Neural Syst. Rehabil. Eng., 23(3), pp. 403–412. [PubMed]
Mensch, G. , and Ellis, P. E. , 1986, “ Running Patterns of Transfemoral Amputees: A Clinical Analysis,” Prosthet. Orthot. Int., 10(3), pp. 129–134. [PubMed]
DiAngelo, D. J. , Winter, D. A. , Ghista, D. N. , and Newcombe, W. R. , 1989, “ Performance Assessment of the Terry Fox Jogging Prosthesis for Above-Knee Amputees,” J. Biomech., 22(6–7), pp. 543–558. [CrossRef] [PubMed]
Lawson, B. E. , Ruhe, B. , Shultz, A. , and Goldfarb, M. , 2015, “ A Powered Prosthetic Intervention for Bilateral Transfemoral Amputees,” IEEE Trans. Biomed. Eng., 62(4), pp. 1042–1050. [CrossRef] [PubMed]
Laferrier, J. Z. , McFarland, L. V. , Boninger, M. L. , Cooper, R. A. , and Reiber, G. E. , 2010, “ Wheeled Mobility: Factors Influencing Mobility and Assistive Technology in Veterans and Service Members With Major Traumatic Limb Loss From Vietnam War and OIF/OEF Conflicts,” J. Rehabil. Res. Dev., 47(4), pp. 349–360. [CrossRef] [PubMed]
Datta, D. , Nair, P. N. , and Payne, J. , 1992, “ Outcome of Prosthetic Management of Bilateral Lower-Limb Amputees,” Disabil. Rehabil., 14(2), pp. 98–102. [CrossRef] [PubMed]
Lawson, B. E. , Mitchell, J. E. , Truex, D. , Shultz, A. , Ledoux, E. , and Goldfarb, M. , 2014, “ A Robotic Leg Prosthesis: Design, Control, and Implementation,” IEEE Robot. Autom. Mag., 21(4), pp. 70–81. [CrossRef]
Ledoux, E. D. , Lawson, B. E. , Shultz, A. H. , Bartlett, H. L. , and Goldfarb, M. , 2015, “ Metabolics of Stair Ascent With a Powered Transfemoral Prosthesis,” Annual IEEE EMBS International Conference, Milan, Italy, Aug. 25–29, pp. 5307–5310.
Quintero, D. , Villarreal, D. J. , and Gregg, R. D. , 2016, “ Preliminary Experiments With a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, South Korea, Oct. 9–14, pp. 1–8.
Chen, G. , Liu, Z. , Chen, L. , and Yang, P. , 2015, “ Control of Powered Knee Joint Prosthesis Based on Finite-State Machine,” Lecture Notes in Electrical Engineering, Z. Deng and H. Li , eds., Vol. 337, Springer-Verlag, Berlin, pp. 395–403.
Radcliffe, C. W. , 1994, “ Four-Bar Linkage Prosthetic Knee Mechanisms: Kinematics, Alignment and Prescription Criteria,” Prosthet. Orthot. Int., 18(3), pp. 159–173.
Awad, M. , Tee, K. S. , Dehghani, A. , Moser, D. , and Zahedi, S. , 2011, “ Design of a Back-Drivable Semi-Active Above Knee Prosthesis,” 14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), Paris, France, Sept. 6–8, pp. 35–42.
Zhao, H. , Horn, J. , Reher, J. , Paredes, V. , and Ames, A. D. , 2016, “ First Steps Towards Translating Robotic Walking to Prostheses: A Nonlinear Optimization Based Control Approach,” Auton. Robots, 41(3), pp. 725–742. [CrossRef]
Zhao, H. , Kolathaya, S. , and Ames, A. D. , 2014, “ Quadratic Programming and Impedance Control for Transfemoral Prosthesis,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 1341–1347.
Lenzi, T. , Sensinger, J. , Lipsey, J. , Hargrove, L. , and Kuiken, T. , 2015, “ Design and Preliminary Testing of the RIC Hybrid Knee Prosthesis,” Annual IEEE EMBS International Conference, Milan, Italy, Aug. 25–29, pp. 1683–1686.
Park, J. , Yoon, G.-H. , Kang, J.-W. , and Choi, S.-B. , 2016, “ Design and Control of a Prosthetic Leg for Above-Knee Amputees Operated in Semi-Active and Active Modes,” Smart Mater. Struct., 25(8), p. 085009. [CrossRef]
Merewether, G. , and Hsieh, T. H. , 2015, “ Impedance Control of a Knee-Ankle Prosthesis,” Carnegie Mellon University, Pittsburgh, PA, pp. 1–4.
Pfeifer, S. , Pagel, A. , Riener, R. , and Vallery, H. , 2015, “ Actuator With Angle-Dependent Elasticity for Biomimetic Transfemoral Prostheses,” IEEE ASME Trans. Mechatronics, 20(3), pp. 1384–1394. [CrossRef]
Martinez-Villalpando, E. C. , and Herr, H. , 2009, “ Agonist-Antagonist Active Knee Prosthesis: A Preliminary Study in Level-Ground Walking,” J. Rehabil. Res. Dev., 46, pp. 361–374. [CrossRef] [PubMed]
Martinez-Villalpando, E. C. , Mooney, L. , Elliott, G. , and Herr, H. , 2011, “ Antagonist Active Knee Prosthesis. A Metabolic Cost of Walking Comparison With a Variable-Damping Prosthetic Knee,” 33rd Annual IEEE EMBS International Conference, Boston, MA, Aug. 30–Sept. 3, pp. 8519–8522.
Rouse, E. J. , Mooney, L. M. , and Herr, H. M. , 2014, “ Clutchable Series-Elastic Actuator: Implications for Prosthetic Knee Design,” Int. J. Rob. Res., 33(13), pp. 1611–1625. [CrossRef]
Flynn, L. , Geeroms, J. , Jimenez-Fabian, R. , Vanderborght, B. , and Lefeber, D. , 2015, “ CYBERLEGS Beta-Prosthesis Active Knee System,” IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, Aug. 11–14, pp. 410–415.
Ambrožič, L. , Goršič, M. , Geeroms, J. , Flynn, L. , Lova, R. M. , Kamnik, R. , Munih, M. , and Vitiello, N. , 2014, “ CYBERLEGs a User-Oriented Robotic Transfemoral Prosthesis With Whole-Body Awareness Control,” IEEE Robot. Autom. Mag., 21, pp. 82–93. [CrossRef]
Sup, F. , Bohara, A. , and Goldfarb, M. , 2007, “ Design and Control of a Powered Knee and Ankle Prosthesis,” IEEE International Conference on Robotics and Automation, Roma, Italy, Apr. 10–14, pp. 4134–4139.
Goldfarb, M. , Barth, E. J. , Gogola, M. A. , and Wehrmeyer, J. A. , 2003, “ Design and Energetic Characterization of a Liquid-Propellant-Powered Actuator for Self-Powered Robots,” IEEE ASME Trans. Mechatron., 8(2), pp. 254–262. [CrossRef]
Fite, K. B. , Mitchell, J. , Barth, E. J. , and Goldfarb, M. , 2006, “ A Unified Force Controller for a Proportional-Injector Direct-Injection Monopropellant-Powered Actuator,” ASME J. Dyn. Syst. Meas. Control, 128(1), pp. 159–164. [CrossRef]
Dabiri, Y. , Najarian, S. , Eslami, M. R. , Zahedi, S. , and Moser, D. , 2013, “ A Powered Prosthetic Knee Joint Inspired From Musculoskeletal System,” Biocybern. Biomed. Eng., 33(2), pp. 118–124. [CrossRef]
Waycaster, G. , Wu, S. K. , and Shen, X. , 2011, “ Design and Control of a Pneumatic Artificial Muscle Actuated Above-Knee Prosthesis,” ASME J. Med. Devices, 5(3), p. 0310039. [CrossRef]
Caldwell, D. G. , Razak, A. , and Goodwin, M. J. , 1993, “ Braided Pneumatic Muscle Actuators,” IFAC Conference on Intelligent Autonomous Vehicles, Brisbane, Australia, June 26–28, pp. 507–512.
Hannaford, B. , and Winters, J. M. , 1990, “ Actuator Properties and Movement Control: Biological and Technological Models,” Multiple Muscle Systems: Biomechanics and Movement Organization, J. M. Winters and S. L. Woo , eds., Springer-Verlag, New York, pp. 101–120.
Isermann, R. , and Raab, U. , 1993, “ Intelligent Actuators−Ways to Autonomous Systems,” Automatica, 29(5), pp. 1315–1331. [CrossRef]
Pillai, M. V. , Kazerooni, H. , and Hurwich, A. , 2011, “ Design of a Semi-Active Knee-Ankle Prosthesis,” IEEE International Conference on Robotics and Automation, Shanghai, China, May 9–13, pp. 5293–5300.
Crea, S. , Donati, M. , de Rossi, S. M. M. , Oddo, C. M. , and Vitiello, N. , 2014, “ A Wireless Flexible Sensorized Insole for Gait Analysis,” Sensors, 14(1), pp. 1073–1093. [CrossRef] [PubMed]
Herr, H. , and Wilkenfeld, A. , 2003, “ User-Adaptive Control of a Magnetorheological Prosthetic Knee,” Ind. Robot: Int. J., 30(1), pp. 42–55. [CrossRef]
Tucker, M. R. , Olivier, J. , Pagel, A. , Bleuler, H. , Bouri, M. , Lambercy, O. , Millán, J. D. R. , Riener, R. , Vallery, H. , and Gassert, R. , 2015, “ Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review,” J. Neuroeng. Rehabil., 12(1), pp. 1–29. [CrossRef] [PubMed]
Lawson, B. , and Goldfarb, M. , 2014, “ Impedance & Admittance-Based Coordination Control Strategies for Robotic Lower Limb Prostheses,” Mech. Eng., 136(9), pp. S12–S17.
Mochon, S. , and McMahon, T. A. , 1980, “ Ballistic Walking,” J. Biomech., 13(1), pp. 49–57. [CrossRef] [PubMed]
Sup, F. , Bohara, A. , and Goldfarb, M. , 2008, “ Design and Control of a Powered Transfemoral Prosthesis,” Int. J. Rob. Res., 27(2), pp. 263–273. [CrossRef] [PubMed]
Varol, H. A. , Sup, F. , and Goldfarb, M. , 2008, “ Real-Time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking,” IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, Oct. 19–22, pp. 66–72.
Segers, V. , Lenoir, M. , Aerts, P. , and Clercq, D. D. , 2007, “ Kinematics of the Transition Between Walking and Running When Gradually Changing Speed,” Gait Posture, 26(3), pp. 349–361. [CrossRef] [PubMed]
Gordon, K. E. , and Ferris, D. P. , 2007, “ Learning to Walk With a Robotic Ankle Exoskeleton,” J. Biomech., 40(12), pp. 2636–2644. [CrossRef] [PubMed]
Huang, H. , Kuiken, T. A. , and Lipschutz, R. D. , 2009, “ A Strategy for Identifying Locomotion Modes Using Surface Electromyography,” IEEE Trans. Biomed. Eng., 56, pp. 65–73. [CrossRef] [PubMed]
Ha, K. H. , Varol, H. A. , and Goldfarb, M. , 2011, “ Volitional Control of a Prosthetic Knee Using Surface Electromyography,” IEEE Trans. Biomed. Eng., 58(1), pp. 144–151. [CrossRef] [PubMed]
Hargrove, L. J. , Simon, A. M. , Lipschutz, R. D. , Finucane, S. B. , and Kuiken, T. A. , 2011, “ Real-Time Myoelectric Control of Knee and Ankle Motions for Transfemoral Amputees,” JAMA, 305(15), pp. 1542–1544. [CrossRef] [PubMed]
Huang, H. , Zhang, F. , Hargrove, L. J. , Dou, Z. , Rogers, D. R. , and Englehart, K. B. , 2011, “ Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular-Mechanical Fusion,” IEEE Trans. Biomed. Eng., 58, pp. 2867–2875. [CrossRef] [PubMed]
Shamaei, K. , Sawicki, G. S. , and Dollar, A. M. , 2013, “ Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking,” PLoS One, 8(3), p. e59993. [CrossRef] [PubMed]
Lenzi, T. , Hargrove, L. , and Sensinger, J. W. , 2014, “ Minimum Jerk Swing Control Allows Variable Cadence in Powered Transfemoral Prostheses,” Annual IEEE EMBS International Conference, Chicago, IL, Aug. 26–30, pp. 2492–2495.
Au, S. , Berniker, M. , and Herr, H. , 2008, “ Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits,” Neural Networks, 21(4), pp. 654–666. [CrossRef] [PubMed]
Boehler, A. , Hollander, K. , Sugar, T. , and Shin, D. , 2008, “ Design, Implementation and Test Results of a Robust Control Method for a Powered Ankle Foot Orthosis (AFO),” IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, May 19–23, pp. 2025–2030.
Blaya, J. A. , and Herr, H. , 2004, “ Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait,” IEEE Trans. Neural Syst. Rehabil. Eng., 12(1), pp. 24–31. [CrossRef] [PubMed]
Hollander, K. , and Sugar, T. , 2007, “ A Robust Control Concept for Robotic Ankle Gait Assistance,” IEEE International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, June 13–15, pp. 119–123.
Fey, N. , Simon, A. , Young, A. , and Hargrove, L. , 2014, “ Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds,” IEEE J. Trans. Eng. Health Med., 2, pp. 1–12. [CrossRef]
Aghasadeghi, N. , Zhao, H. , Hargrove, L. J. , Ames, A. D. , Perreault, E. J. , and Bretl, T. , 2013, “ Learning Impedance Controller Parameters for Lower-Limb Prostheses,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, Nov. 3–7, pp. 4268–4274.
Ames, A. D. , Galloway, K. , and Grizzle, J. W. , 2012, “ Control Lyapunov Functions and Hybrid Zero Dynamics,” IEEE Annual Conference on Decision and Control (CDC), Maui, Hawaii, Dec. 10–13, pp. 6837–6842.
Sreenath, K. , Park, H. W. , Poulakakis, I. , and Grizzle, J. W. , 2011, “ A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL,” Int. J. Rob. Res., 30(9), pp. 1170–1193. [CrossRef]
Ramezani, A. , Hurst, J. , Hamed, K. , and Grizzle, J. , 2013, “ Performance Analysis and Feedback Control of ATRIAS, a Three-Dimensional Bipedal Robot,” ASME J. Dyn. Syst. Meas. Control, 136(2), p. 021012. [CrossRef]
Buss, B. , Ramezani, A. , Hamed, K. , Griffin, B. , Galloway, K. , and Grizzle, J. , 2014, “ Preliminary Walking Experiments With Underactuated 3D Bipedal Robot MARLO,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, Sept. 14–18, pp. 2529–2536.
Hamed, K. A. , and Grizzle, J. W. , 2014, “ Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry,” IEEE Trans. Robot., 30(2), pp. 365–381. [CrossRef]
Martin, A. E. , Post, D. C. , and Schmiedeler, J. P. , 2014, “ Design and Experimental Implementation of a Hybrid Zero Dynamics-Based Controller for Planar Bipeds With Curved Feet,” Int. J. Rob. Res., 33(7), pp. 988–1005. [CrossRef]
Villarreal, D. J. , Poonawala, H. , and Gregg, R. D. , 2017, “ A Robust Parameterization of Human Joint Patterns Across Phase-Shifting Perturbations,” IEEE Trans. Neural Syst. Rehabil. Eng., 25(3), pp. 265–278. [CrossRef] [PubMed]
Vallery, H. , Burgkart, R. , Hartmann, C. , Mitternacht, J. , Riener, R. , and Buss, M. , 2011, “ Complementary Limb Motion Estimation for the Control of Active Knee Prostheses,” Biomed. Tech./Biomed. Eng., 56(1), pp. 45–51. [CrossRef]
Dabiri, Y. , Najarian, S. , Zahedi, S. , Moser, D. , and Shirzad, E. , 2009, “ Muscle Contribution in the Swing Phase of Transfemoral Amputee Gait: An Inverse Dynamics Approach,” Res. J. Biol. Sci., 4(10), pp. 1076–1084.
Blumentritt, S. , Scherer, H. , Wellershaus, U. , and Michael, J. , 1997, “ Design Principles, Biomechanical Data and Clinical Experience With a Polycentric Knee Offering Controlled Stance Phase Knee Flexion: A Preliminary Report,” J. Prosthet. Orthot., 9(1), pp. 18–24. [CrossRef]
Riener, R. , Rabuffetti, M. , and Frigo, C. , 2002, “ Stair Ascent and Descent at Different Inclinations,” Gait Posture, 15(1), pp. 32–44. [CrossRef] [PubMed]
Lenzi, T. , Hargrove, L. , and Sensinger, J. , 2014, “ Speed-Adaptation Mechanism: Robotic Prostheses Can Actively Regulate Joint Torque,” IEEE Robot. Autom. Mag., 21(4), pp. 94–107. [CrossRef]
Torrealba, R. R. , Cappelletto, J. , Fermín, L. , Fernández-López, G. , and Grieco, J. C. , 2012, “ Cybernetic Knee Prosthesis: Application of an Adaptive Central Pattern Generator,” Kybernetes, 41(1/2), pp. 192–205. [CrossRef]
Össur Bionic Technology, 2007, “ Power Knee,” Össur Bionic Technology, Ossur, Iceland, accessed Apr. 19, 2019, https://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee
Browning, R. C. , Modica, J. R. , Kram, R. , and Goswami, A. , 2007, “ The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking,” Med. Sci. Sport. Exercise, 39(3), pp. 515–525[InsertedFromOnline. [CrossRef]
Gitter, A. M. D. , Czerniecki, J. M. D. , and Meinders, M. M. S. , 1997, “ Effects of Prosthetic Mass on Swing Phase Work During Above-Knee Amputee Ambulation,” Am. J. Phys. Med. Rehabil., 76(2), pp. 114–121. [CrossRef] [PubMed]
Narang, Y. S. , Arelekatti, V. N. M. , and Winter, A. G. , 2016, “ The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics,” IEEE Trans. Neural Syst. Rehabil. Eng., 24(7), pp. 754–763. [CrossRef] [PubMed]
Awad, M. I. , Deghani-Sanij, A. A. , Moser, D. , and Zahedi, S. , 2015, “ Inertia Properties of a Prosthetic Knee Mechanism,” 16th Annual Conference Towards Autonomous Robotic Systems (TAROS), Liverpool, UK, Sept. 8–10, pp. 38–43.
Wolf, E. J. , Everding, V. Q. , Linberg, A. L. , Schnall, B. L. , Czerniecki, J. M. , and Gambel, J. M. , 2012, “ Assessment of Transfemoral Amputees Using C-Leg and Power Knee for Ascending and Descending Inclines and Steps,” JRRD, 49(6), pp. 831–842. [CrossRef]
Highsmith, M. J. , Kahle, J. T. , Carey, S. L. , Lura, D. J. , Dubey, R. V. , and Quillen, W. S. , 2010, “ Kinetic Differences Using a Power Knee and C-Leg While Sitting Down and Standing Up: A Case Report,” J. Prosthet. Orthot., 22(4), pp. 237–243. [CrossRef]
Otto Bock, 2017, “ Prosthetics: Above-Knee Prosthesis With Genium,” Otto Bock, Germany, accessed Feb. 21, 2017, https://www.ottobockus.com/prosthetics/lower-limb-prosthetics/solution-overview/genium-above-knee-system/
Össur, 2017, “ Prosthetic Solutions: Rheo Knee XC,” Össur, Iceland, accessed Feb. 21, 2017, http://www.ossur.com/rheoknee-xc
Freedom Innovations, 2017, “ Knees: Plié 3,” Freedom Innovations, Irvine, CA, USA, accessed Feb. 21, 2017, http://www.freedom-innovations.com/plie-3/
Endolite, 2017, “ Prosthetic Products—Orion3,” Endolite, UK, accessed Feb. 21, 2017, http://www.endolite.com/products/orion3
Horn, G. , 1972, “ Electro-Control: An EMG-Controlled A/K Prosthesis,” Med. Biol. Eng. Comput., 10(1), pp. 61–73. [CrossRef]
Saxena, S. C. , and Mukhopadhyay, P. , 1977, “ EMG Operated Electronic Artificial-Leg Controller,” Med. Biol. Eng. Comput., 15(5), pp. 553–557. [CrossRef] [PubMed]
Peeraer, L. , Aeyels, B. , and Van der Perre, G. , 1990, “ Development of EMG-Based Mode and Intent Recognition Algorithms for a Computer-Controlled Above-Knee Prosthesis,” J. Biomed. Eng., 12(3), pp. 178–182. [CrossRef] [PubMed]
Aeyels, B. , Peeraer, L. , Sloten, J. V. , and Van der Perre, G. , 1992, “ Development of an A/K Prosthesis Equipped With a Microcomputer-Controlled Knee Joint: First Test Results,” J. Biomed. Eng., 14(3), pp. 199–202. [CrossRef] [PubMed]
Aeyels, B. , Van Petegem, W. , Sloten, J. V. , Van der Perre, G. , and Peeraer, L. , 1995, “ An EMG-Based Finite State Approach for a Microcomputer-Controlled Above-Knee Prosthesis,” IEEE Annual Conference of the Engineering in Medicine and Biology Society, Montréal, QC, Canada, Sept. 20–23, pp. 1315–1316.
Huang, H. , Zhou, P. , Li, G. , and Kuiken, T. A. , 2008, “ An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface,” IEEE Trans. Neural Syst. Rehabil. Eng., 16, pp. 37–45. [CrossRef] [PubMed]
Young, A. J. , Hargrove, L. G. , and Kuiken, T. A. , 2012, “ Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Changing Interelectrode Distance and Electrode Configuration,” IEEE Trans. Biomed. Eng., 59(3), pp. 645–653. [CrossRef] [PubMed]
Au, S. K. , Bonato, P. , and Herr, H. , 2005, “ An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study,” IEEE International Conference on Rehabilitation Robotics (ICORR), Chicago, June 28–July 1, pp. 375–379.
Donath, M. , 1974, “ Proportional EMG Control for Above-Knee Prosthesis,” Master thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA.
Park, E. , and Meek, S. , 1993, “ Fatigue Compensation of the Electromyographic Signal for Prosthetics Control and Force Estimation,” IEEE Trans. Biomed. Eng., 40(10), pp. 1019–1023. [CrossRef] [PubMed]
Össur, 2017, “ About Össur—News From Össur,” Össur, Iceland, accessed Feb. 21, 2017, https://www.ossur.com/about-ossur/news-from-ossur/1396-ossur-introduces-first-mind-controlled-bionic-prosthetic-lower-limbs-for-amputees
Chen, A. , Yao, J. , Kuiken, T. A. , and Dewald, J. P. A. , 2013, “ Cortical Motor Activity and Reorganization Following Upper-Limb Amputation and Subsequent Targeted Reinnervation,” Neuroimage Clin., 3, pp. 498–506. [CrossRef] [PubMed]
Elliott, J. , 2005, “ Bionic Arm ‘Transformed My Life’,” BBC News Health Reporter (UK), accessed Apr. 12, 2019, http://news.bbc.co.uk/2/hi/health/4648139.stm
Torrealba, R. R. , Pérez-D'Arpino, C. , Cappelletto, J. , Fermín-León, L. , Fernández-López, G. , and Grieco, J. C. , 2010, “ Through the Development of a Biomechatronic Knee Prosthesis for Transfemoral Amputees: Mechanical Design and Manufacture, Human Gait Characterization, Intelligent Control Strategies and Tests,” IEEE International Conference on Robotics and Automation, Anchorage, AK, May 3–8, pp. 2934–2939.
Righetti, L. , and Ijspeert, A. , 2006, “ Programmable Central Pattern Generators: An Application to Biped Locomotion Control,” IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, May 15–19, pp. 1585–1590.

Figures

Grahic Jump Location
Fig. 1

Different classifications of AKPs related to actuators and corresponding references

Grahic Jump Location
Fig. 2

Third generation knee–ankle prosthetic system of theVanderbilt University. (Reproduced with permission from Lawson et al. [71]. Copyright 2014 by IEEE.)

Grahic Jump Location
Fig. 3

Variant of the SEA design: CSEA: (A) electromagnetic clutch; (B) motor timing pulley; (C) Maxon EC-40 4-Pole 200 W brushless motor; (D) steel drive cable; (E) internal hard stop; (F) knee pulley and joint; (G) distal pyramid with embedded load sensor; (H) paired 35 deg angular bearings; (I) ballscrew timing pulley; (J) series-elastic housing; (K) extension spring; (L) ball nut linear bearings; (M) ball nut; (N) series-elastic housing linear bearings; (O) flexion spring; and (P) ballscrew. (Reprinted by Permission of SAGE Publications, Inc.)

Grahic Jump Location
Fig. 4

Classification of instrumentation found for AKPs and corresponding references

Grahic Jump Location
Fig. 5

Scheme of the FSM approach as control strategy for AKPs

Grahic Jump Location
Fig. 6

Scheme of the continuous control approach for AKPs

Grahic Jump Location
Fig. 7

Different classifications related to control of AKPs and corresponding references

Grahic Jump Location
Fig. 8

Classification of testing trials performed on AKPs and corresponding references, besides the metrics utilized for each activity: gait biomechanics (GB), power consumption (PC), gait recognition system (GRS), control performance (CP), and metabolics assessment (MA)

Grahic Jump Location
Fig. 9

Oxygen rate for a level-up/down stairs-level walking trial with a powered prosthesis. The dots correspond to the raw sample and the black line refers to the filtered data. The vertical bar shows the stair ascent period (Copyright 2015, IEEE. Reprinted, with permission, from [72].)

Grahic Jump Location
Fig. 10

Classification of different metrics found for evaluating AKPs during testing trials and corresponding references

Grahic Jump Location
Fig. 11

Performance of knee and ankle joints of the third generation prosthetic leg of the Vanderbilt University in terms of both kinematics and kinetics. (Reproduced with permission from Ledoux et al. [72]. Copyright 2015 by IEEE.)

Grahic Jump Location
Fig. 12

Different classifications of limitations found in AKPs and corresponding references

Grahic Jump Location
Fig. 13

CSEA knee with the BiOM-powered ankle prosthesis: (a) anterior view of the CSEA knee and (b) anterior and lateral views of the complete knee–ankle prosthesis. (Reprinted by Permission of SAGE Publications, Inc.)

Grahic Jump Location
Fig. 14

Time (a) and percentage (b) distribution of references regarding different types of actuators utilized on AKPs: rigid-coupled (A), elastic-compliant (B), pneumatic (C), and hydraulic (D)

Grahic Jump Location
Fig. 15

Time (a) and percentage (b) distribution of references regarding different sensors used on AKPs: force (A), positioning (B), inertial (C), EMG (D), and fluid pressure (E). Also note the subclassifications of sensors in percentage distribution in the small pie charts at the right side: (A) load cells (A.1), FSRs (A.2) and contact switches (A.3); (B) potentiometers (B.1) and encoders (B.2); and (C) IMUs (C.1), accelerometers (C.2), and gyroscopes (C.3).

Grahic Jump Location
Fig. 16

Time (a) and percentage (b) distribution of references regarding different types of control strategies employed on AKPs: FSM (A), FSM-tracking (B), continuous (C), FSM-volitional (D), and volitional (E)

Grahic Jump Location
Fig. 17

Time (a) and percentage (b) distribution of references regarding different testing trials applied on AKPs: level walking (A), stairs handling (B), slope walking (C), sit-to-stand transition (D), running (E), standing on slopes (F), and trajectory tracking (G)

Grahic Jump Location
Fig. 18

Time (a) and percentage (b) distribution of references regarding metrics utilized to assess performance of AKPs: gait biomechanics (A), power consumption (B), gait recognition system (C), control performance (D), and metabolics assessment (E)

Grahic Jump Location
Fig. 19

Time (a) and percentage (b) distribution of references regarding limitations found on AKPs: one testing subject (A), leg-bypass adapter bias (B), controller shortcomings (C), EMG-related drawbacks (D), commercial dependence (E), tethered devices (F), and dimensioning and weight (G)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In