Oefelein, J. C.
, and
Yang, V.
, 1993, “Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines,” J. Propul. Power, 9(5), pp. 657–677.

[CrossRef]
Natanzon, A. S.
, 1999, Combustion Instability, Vol. 222, American Institute of Aeronautics and Astronautics, Reston, VA.

Lieuwen, T. C.
, and
Yang, V.
, 2005, Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics, Reston, VA .

Culick, F. E. C.
, 2006, “Unsteady Motions in Combustion Chambers for Propulsion Systems,” North Atlantic Treaty Organization, Brussels, Belgium, Report No. RTO AG-AVT-039.

Huang, Y.
, and
Yang, V.
, 2009, “Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion,” Prog. Energy Combust. Sci., 35(4), pp. 293–364.

[CrossRef]
Poinsot, T.
, 2017, “Prediction and Control of Combustion Instabilities in Real Engines,” Proc. Combust. Inst., 36(1), pp. 1–28.

[CrossRef]
Juniper, M. P.
, and
Sujith, R. I.
, 2018, “Sensitivity and Nonlinearity of Thermoacoustic Oscillations,” Annu. Rev. Fluid Mech., 50(1), pp. 661–689.

[CrossRef]
Dowling, A. P.
, and
Ffowcs Williams, J. E.
, 1983, Sound and Sources of Sound, Ellis Horwood, Chichester, UK.

Hoeijmakers, M.
,
Kornilov, V.
,
Lopez Arteaga, I.
,
de Goey, P.
, and
Nijmeijer, H.
, 2014, “Intrinsic Instability of Flame-Acoustic Coupling,” Combust. Flame, 161(11), pp. 2860–2867.

[CrossRef]
Emmert, T.
,
Bomberg, S.
, and
Polifke, W.
, 2015, “Intrinsic Thermoacoustic Instability of Premixed Flames,” Combust. Flame, 162(1), pp. 75–85.

[CrossRef]
Bomberg, S.
,
Emmert, T.
, and
Polifke, W.
, 2015, “Thermal Versus Acoustic Response of Velocity Sensitive Premixed Flames,” Proc. Combust. Inst., 35(3), pp. 3185–3192.

[CrossRef]
Courtine, E.
,
Selle, L.
, and
Poinsot, T.
, 2015, “DNS of Intrinsic ThermoAcoustic Modes in Laminar Premixed Flames,” Combust. Flame, 162(11), pp. 4331–4341.

[CrossRef]
Silva, C. F.
,
Emmert, T.
,
Jaensch, S.
, and
Polifke, W.
, 2015, “Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame,” Combust. Flame, 162(9), pp. 3370–3378.

[CrossRef]
Silva, C. F.
,
Merk, M.
,
Komarek, T.
, and
Polifke, W.
, 2017, “The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame,” Combust. Flame, 182, pp. 269–278.

[CrossRef]
Emmert, T.
,
Bomberg, S.
,
Jaensch, S.
, and
Polifke, W.
, 2017, “Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor,” Proc. Combust. Inst., 36(3), pp. 3835–3842.

[CrossRef]
Rayleigh, L.
, 1878, “The Explanation of Certain Acoustical Phenomena,” Nature, 18, pp. 319–321.

[CrossRef]
Putnam, A. A.
, and
Dennis, W. R.
, 1954, “Burner Oscillations of the Gauze-Tone Type,” J. Acoust. Soc. Am., 26(5), pp. 716–725.

[CrossRef]
Chu, B. T.
, 1965, “On the Energy Transfer to Small Disturbances in Fluid Flow—Part I,” Acta Mech., 1(3), pp. 215–234.

[CrossRef]
Cantrell, R. H.
, and
Hart, R. W.
, 1964, “Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum and Energy Considerations,” J. Acoust. Soc. Am., 36(4), pp. 697–706.

[CrossRef]
Candel, S. M.
, 1975, “Acoustic Conservation Principles and an Application to Plane and Modal Propagation in Nozzles and Diffusers,” J. Sound Vib., 41(2), pp. 207–232.

[CrossRef]
Myers, M. K.
, 1991, “Transport of Energy by Disturbances in Arbitrary Steady Flows,” J. Fluid Mech., 226(1), pp. 383–400.

[CrossRef]
Hanifi, A.
,
Schmid, P. J.
, and
Henningson, D. S.
, 1996, “Transient Growth in Compressible Boundary Layer Flow,” Phys. Fluids, 8(3), p. 826.

[CrossRef]
Nicoud, F.
, and
Poinsot, T.
, 2005, “Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?,” Combust. Flame, 142(1–2), pp. 153–159.

[CrossRef]
Karimi, N.
,
Brear, M. J.
, and
Moase, W. H.
, 2008, “Acoustic and Disturbance Energy Analysis of a Flow With Heat Communication,” J. Fluid Mech., 597, pp. 67–89.

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/acoustic-and-disturbance-energy-analysis-of-a-flow-with-heat-communication/502BDB8E26B805BB6346638493F5CF40
George, K. J.
, and
Sujith, R. I.
, 2011, “On Chu's Disturbance Energy,” J. Sound Vib., 330(22), pp. 5280–5291.

[CrossRef]
George, K. J.
, and
Sujith, R.
, 2012, “Disturbance Energy Norms: A Critical Analysis,” J. Sound Vib., 331(7), pp. 1552–1566.

[CrossRef]
Brear, M. J.
,
Nicoud, F.
,
Talei, M.
,
Giauque, A.
, and
Hawkes, E. R.
, 2012, “Disturbance Energy Transport and Sound Production in Gaseous Combustion,” J. Fluid Mech., 707, pp. 53–73.

[CrossRef]
Trefethen, L. N.
,
Trefethen, A. E.
,
Reddy, S. C.
, and
Driscoll, T. A.
, 1993, “Hydrodynamic Stability Without Eigenvalues,” Science, 261(5121), pp. 578–584.

[CrossRef] [PubMed]
Schmid, P. J.
, and
Henningson, D. S.
, 2001, Stability and Transition of Shear Flows, Springer, New York.

Trefethen, L. N.
, and
Embree, M.
, 2005, Spectra and Pseudospectra, Princeton University Press, Princeton, NJ.

Schmid, P. J.
, 2007, “Nonmodal Stability Theory,” Ann. Rev. Fluid Mech., 39(1), pp. 129–162.

[CrossRef]
Schmid, P. J.
, and
Brandt, L.
, 2014, “Analysis of Fluid Systems: Stability, Receptivity, Sensitivity,” ASME Appl. Mech. Rev., 66(2), p. 021003.

http://appliedmechanicsreviews.asmedigitalcollection.asme.org/article.aspx?articleid=1884419
Juniper, M. P.
, 2011, “Transient Growth and Triggering in the Horizontal Rijke Tube,” Int. J. Spray Combust. Dyn., 3(3), pp. 209–224.

[CrossRef]
Balasubramanian, K.
, and
Sujith, R. I.
, 2008, “Thermoacoustic Instability in a Rijke Tube: Non-Normality and Nonlinearity,” Phys. Fluids, 20(4), p. 044103.

[CrossRef]
Balasubramanian, K.
, and
Sujith, R. I.
, 2013, “
Non-Normality and Nonlinearity in Combustion-Acoustic Interaction in Diffusion Flames—CORRIGENDUM,” J. Fluid Mech., 733, p. 680.

[CrossRef]
Magri, L.
,
Balasubramanian, K.
,
Sujith, R. I.
, and
Juniper, M. P.
, 2013, “
Non-Normality in Combustion-Acoustic Interaction in Diffusion Flames: A Critical Revision,” J. Fluid Mech., 733, pp. 681–684.

[CrossRef]
Sujith, R. I.
,
Juniper, M. P.
, and
Schmid, P. J.
, 2016, “
Non-Normality and Nonlinearity in Thermoacoustic Instabilities,” Int. J. Spray Combust. Dyn., 8(2), pp. 119–146.

[CrossRef]
Nicoud, F.
,
Benoit, L.
,
Sensiau, C.
, and
Poinsot, T.
, 2007, “Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames,” AIAA J., 45(2), pp. 426–441.

[CrossRef]
Nagaraja, S.
,
Kedia, K.
, and
Sujith, R. I.
, 2009, “Characterizing Energy Growth During Combustion Instabilities: Singular values or Eigenvalues?,” Proc. Combust. Inst., 32(2), pp. 2933–2940.

[CrossRef]
Juniper, M. P.
, 2011, “Triggering in the Horizontal Rijke Tube: Non-Normality, Transient Growth and Bypass Transition,” J. Fluid Mech., 667, pp. 272–308.

[CrossRef]
Waugh, I.
,
Geuß, M.
, and
Juniper, M.
, 2011, “Triggering, Bypass Transition and the Effect of Noise on a Linearly Stable Thermoacoustic System,” Proc. Combust. Inst., 33(2), pp. 2945–2952.

[CrossRef]
Waugh, I. C.
, and
Juniper, M. P.
, 2011, “Triggering in a Thermoacoustic System With Stochastic Noise,” Int. J. Spray Combust. Dyn., 3(3), pp. 225–242.

[CrossRef]
Wieczorek, K.
,
Sensiau, C.
,
Polifke, W.
, and
Nicoud, F.
, 2011, “Assessing Non-Normal Effects in Thermoacoustic Systems With Mean Flow,” Phys. Fluids, 23(10), p. 107103.

[CrossRef]
Mariappan, S.
, and
Sujith, R. I.
, 2010, “Thermoacoustic Instability in a Solid Rocket Motor: Non-Normality and Nonlinear Instabilities,” J. Fluid Mech., 653, pp. 1–33.

[CrossRef]
Mariappan, S.
, 2011, “Theoretical and Experimental Investigation of the Non-Normal Nature of Thermoacoustic Interactions,” Ph.D. thesis, IIT Madras, Chennai, India.

Subramanian, P.
, and
Sujith, R. I.
, 2011, “
Non-Normality and Internal Flame Dynamics in Premixed Flame-Acoustic Interaction,” J. Fluid Mech., 679, pp. 315–342.

[CrossRef]
Blumenthal, R. S.
,
Tangirala, A. K.
,
Sujith, R.
, and
Polifke, W.
, 2017, “A Systems Perspective on Non-Normality in Low-Order Thermoacoustic Models: Full Norms, Semi-Norms and Transient Growth,” Int. J. Spray Combust. Dyn., 9(1), pp. 19–43.

Stow, S. R.
, and
Dowling, A. P.
, 2008, “A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations,” ASME Paper No. GT2008-50770.

Pironneau, O.
, 1973, “On Optimum Profiles in Stokes Flow,” J. Fluid Mech., 59(1), pp. 117–128.

Pironneau, O.
, 1974, “On Optimum Design in Fluid Mechanics,” J. Fluid Mech., 64(1), pp. 97–110.

Jameson, A.
, 1988, “Aerodynamic Design Via Control Theory,” J. Sci. Comput., 3(3), pp. 233–260.

Jameson, A.
,
Martinelli, L.
, and
Pierce, N. A.
, 1998, “Optimum Aerodynamic Design Using the Navier–Stokes Equations,” Theor. Comput. Fluid Dyn., 10(1–4), pp. 213–237.

Jameson, A.
, 1999, “
Re-Engineering the Design Process Through Computation,” J. Aircr., 36(1), pp. 36–50.

Liang, C.
,
Fidkowski, K.
,
Persson, P.-O.
, and
Vincent, P.
, 2014, “Celebrating the 80th Birthday of Professor Antony Jameson,” Comput. Fluids, 98, pp. 1–2.

Tumin, A. M.
, and
Fedorov, A. V.
, 1984, “Instability Wave Excitation by a Localized Vibrator in the Boundary Layer,” J. Appl. Mech. Tech. Phys., 25(6), pp. 867–873.

Hill, D. C.
, 1992, “A Theoretical Approach for Analyzing the Restabilization of Wakes,” National Aeronautics and Space Administration, Washington, DC, Memorandum No. 103858.

Strykowski, P. J.
, and
Sreenivasan, K. R.
, 1990, “On the Formation and Suppression of Vortex ‘Shedding’ at Low Reynolds Numbers,” J. Fluid Mech., 218(1), pp. 71–107.

Grosch, C. E.
, and
Salwen, H.
, 1978, “The Continuous Spectrum of the Orr-Sommerfeld Equation—Part 1: The Spectrum and the Eigenfunctions,” J. Fluid Mech., 87(1), pp. 33–54.

Salwen, H.
, and
Grosch, C. E.
, 1981, “The Continuous Spectrum of the Orr-Sommerfeld Equation—Part 2: Eigenfunction Expansions,” J. Fluid Mech., 104(1), pp. 445–465.

Hill, D. C.
, 1995, “Adjoint Systems and Their Role in the Receptivity Problem for Boundary Layers,” J. Fluid Mech., 292(1), pp. 183–204.

Luchini, P.
, and
Bottaro, A.
, 1998, “Görtler Vortices: A Backward-In-Time Approach to the Receptivity Problem,” J. Fluid Mech., 363, pp. 1–23.

Pralits, J. O.
,
Airiau, C.
,
Hanifi, A.
, and
Henningson, D. S.
, 2000, “Sensitivity Analysis Using Adjoint Parabolized Stability Equations for Compressible Flows,” Flow, Turbul. Combust., 65(3/4), pp. 321–346.

Giannetti, F.
, and
Luchini, P.
, 2006, “
Leading-Edge Receptivity by Adjoint Methods,” J. Fluid Mech., 547(1), pp. 21–53.

Giannetti, F.
, and
Luchini, P.
, 2007, “Structural Sensitivity of the First Instability of the Cylinder Wake,” J. Fluid Mech., 581, pp. 167–197.

Huerre, P.
, and
Monkewitz, P. A.
, 1990, “Local and Global Instabilities in Spatially Developing Flows,” Annu. Rev. Fluid Mech., 22(1), pp. 473–537.

Schmid, P. J.
,
Henningson, D. S.
,
Khorrami, M. R.
, and
Malik, M. R.
, 1993, “A Study of Eigenvalue Sensitivity for Hydrodynamic Stability Operators,” Theor. Comput. Fluid Dyn., 4(5), pp. 227–240.

Chomaz, J.-M.
, 1993, “Linear and Non-Linear, Local and Global Stability Analysis of Open Flows,” Turbulence in Spatially Extended Systems, Nova Science Publishers, Hauppauge, NY, pp. 245–257.

Chomaz, J.-M.
, 2005, “Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity,” Annu. Rev. Fluid Mech., 37(1), pp. 357–392.

Bottaro, A.
,
Corbett, P.
, and
Luchini, P.
, 2003, “The Effect of Base Flow Variation on Flow Stability,” J. Fluid Mech., 476, pp. 293–302.

Marquet, O.
,
Sipp, D.
, and
Jacquin, L.
, 2008, “Sensitivity Analysis and Passive Control of Cylinder Flow,” J. Fluid Mech., 615, pp. 221–252.

Luchini, P.
,
Giannetti, F.
, and
Pralits, J. O.
, 2008, “Structural Sensitivity of Linear and Nonlinear Global Modes,” AIAA Paper No. 2008-4227.

Luchini, P.
,
Giannetti, F.
, and
Pralits, J.
, 2009, “Structural Sensitivity of the Finite-Amplitude Vortex Shedding Behind a Circular Cylinder,” *IUTAM Symposium on Unsteady Separated Flows and Their Control* (IUTAM Bookseries, Vol. 14), M. Braza and K. Hourigan, eds., Springer, Dordrecht, The Netherlands
, pp. 151–160.

Marino, L.
, and
Luchini, P.
, 2009, “Adjoint Analysis of the Flow Over a Forward-Facing Step,” Theor. Comput. Fluid Dyn., 23(1), pp. 37–54.

Meliga, P.
,
Chomaz, J.-M.
, and
Sipp, D.
, 2009, “Unsteadiness in the Wake of Disks and Spheres: Instability, Receptivity and Control Using Direct and Adjoint Global Stability Analyses,” J. Fluids Struct., 25(4), pp. 601–616.

Citro, V.
,
Tchoufag, J.
,
Fabre, D.
,
Giannetti, F.
, and
Luchini, P.
, 2016, “Linear Stability and Weakly Nonlinear Analysis of the Flow Past Rotating Spheres,” J. Fluid Mech., 807, pp. 62–86.

Citro, V.
,
Siconolfi, L.
,
Fabre, D.
,
Giannetti, F.
, and
Luchini, P.
, 2017, “Stability and Sensitivity Analysis of the Secondary Instability in the Sphere Wake,” AIAA J., 55(11), pp. 3661–3668.

Pralits, J. O.
,
Brandt, L.
, and
Giannetti, F.
, 2010, “Instability and Sensitivity of the Flow Around a Rotating Circular Cylinder,” J. Fluid Mech., 650, pp. 1–24.

Tammisola, O.
, 2012, “Oscillatory Sensitivity Patterns for Global Modes in Wakes,” J. Fluid Mech., 701, pp. 251–277.

Lashgari, I.
,
Pralits, J. O.
,
Giannetti, F.
, and
Brandt, L.
, 2012, “First Instability of the Flow of Shear-Thinning and Shear-Thickening Fluids Past a Circular Cylinder,” J. Fluid Mech., 701, pp. 201–227.

Fani, A.
,
Camarri, S.
, and
Salvetti, M. V.
, 2012, “Stability Analysis and Control of the Flow in a Symmetric Channel With a Sudden Expansion,” Phys. Fluids, 24(8), p. 084102.

Tchoufag, J.
,
Magnaudet, J.
, and
Fabre, D.
, 2013, “Linear Stability and Sensitivity of the Flow Past a Fixed Oblate Spheroidal Bubble,” Phys. Fluids, 25(5), p. 054108.

Fani, A.
,
Camarri, S.
, and
Salvetti, M. V.
, 2013, “Investigation of the Steady Engulfment Regime in a Three-Dimensional T-Mixer,” Phys. Fluids, 25(6), p. 064102.

Fani, A.
,
Camarri, S.
, and
Salvetti, M. V.
, 2014, “Unsteady Asymmetric Engulfment Regime in a T-Mixer,” Phys. Fluids, 26(7), p. 074101.

Lashgari, I.
,
Tammisola, O.
,
Citro, V.
,
Juniper, M. P.
, and
Brandt, L.
, 2014, “The Planar X-Junction Flow: Stability Analysis and Control,” J. Fluid Mech., 753, pp. 1–28.

Carini, M.
,
Giannetti, F.
, and
Auteri, F.
, 2014, “First Instability and Structural Sensitivity of the Flow Past Two Side-by-Side Cylinders,” J. Fluid Mech., 749, pp. 627–648.

Boujo, E.
, and
Gallaire, F.
, 2014, “Controlled Reattachment in Separated Flows: A Variational Approach to Recirculation Length Reduction,” J. Fluid Mech., 742, pp. 618–635.

Citro, V.
,
Giannetti, F.
,
Brandt, L.
, and
Luchini, P.
, 2015, “Linear Three-Dimensional Global and Asymptotic Stability Analysis of Incompressible Open Cavity Flow,” J. Fluid Mech., 768, pp. 113–140.

Citro, V.
,
Giannetti, F.
, and
Pralits, J. O.
, 2015, “
Three-Dimensional Stability, Receptivity and Sensitivity of Non-Newtonian Flows Inside Open Cavities,” Fluid Dyn. Res., 47(1), p. 015503.

Tammisola, O.
,
Giannetti, F.
,
Citro, V.
, and
Juniper, M. P. P.
, 2014, “
Second-Order Perturbation of Global Modes and Implications for Spanwise Wavy Actuation,” J. Fluid Mech., 755, pp. 314–335.

Boujo, E.
,
Fani, A.
, and
Gallaire, F.
, 2015, “
Second-Order Sensitivity of Parallel Shear Flows and Optimal Spanwise-Periodic Flow Modifications,” J. Fluid Mech., 782, pp. 491–514.

Qadri, U. A.
,
Mistry, D.
, and
Juniper, M. P.
, 2013, “Structural Sensitivity of Spiral Vortex Breakdown,” J. Fluid Mech., 720, pp. 558–581.

Qadri, U. A.
,
Chandler, G. J.
, and
Juniper, M. P.
, 2018, “Passive Control of Global Instability in Low-Density Jets,” Eur. J. Mech.–B/Fluids, 72, pp. 311–319.

Meliga, P.
,
Sipp, D.
, and
Chomaz, J.-M.
, 2010, “
Open-Loop Control of Compressible Afterbody Flows Using Adjoint Methods,” Phys. Fluids, 22(5), p. 054109.

Meliga, P.
,
Sipp, D.
, and
Chomaz, J.-M.
, 2010, “Effect of Compressibility on the Global Stability of Axisymmetric Wake Flows,” J. Fluid Mech., 660, pp. 499–526.

Fedorov, A. V.
, 2013, “Receptivity of a Supersonic Boundary Layer to Solid Particulates,” J. Fluid Mech., 737, pp. 105–131.

Giannetti, F.
,
Camarri, S.
, and
Luchini, P.
, 2010, “Structural Sensitivity of the Secondary Instability in the Wake of a Circular Cylinder,” J. Fluid Mech., 651, pp. 319–337.

Pralits, J. O.
,
Giannetti, F.
, and
Brandt, L.
, 2013, “
Three-Dimensional Instability of the Flow Around a Rotating Circular Cylinder,” J. Fluid Mech., 730, pp. 5–18.

Carini, M.
,
Giannetti, F.
, and
Auteri, F.
, 2014, “On the Origin of the Flip-Flop Instability of Two Side-By-Side Cylinder Wakes,” J. Fluid Mech., 742, pp. 552–576.

Giannetti, F.
,
Camarri, V.
, and
Citro, V.
, 2019, “Sensitivity Analysis and Passive Control of the Secondary Instability in the Cylinder Wake,” J. Fluid Mech., 864, pp. 45–72.

Crighton, D. G.
, and
Gaster, M.
, 1976, “Stability of Slowly Diverging Jet Flow,” J. Fluid Mech., 77(2), pp. 397–413.

Barkley, D.
, 2006, “Linear Analysis of the Cylinder Wake Mean Flow,” Europhys. Lett., 75(5), pp. 750–756.

Sipp, D.
, and
Lebedev, A.
, 2007, “Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows,” J. Fluid Mech., 593, pp. 333–358.

Beneddine, S.
,
Sipp, D.
,
Arnault, A.
,
Dandois, J.
, and
Lesshafft, L.
, 2016, “Conditions for Validity of Mean Flow Stability Analysis,” J. Fluid Mech., 798, pp. 485–504.

McKeon, B. J.
, and
Sharma, A. S.
, 2010, “A Critical-Layer Framework for Turbulent Pipe Flow,” J. Fluid Mech., 658, pp. 336–382.

Turton, S. E.
,
Tuckerman, L. S.
, and
Barkley, D.
, 2015, “Prediction of Frequencies in Thermosolutal Convection From Mean Flows,” Phys. Rev. E, 91(4), p. 43009.

Crouch, J. D.
,
Garbaruk, A.
, and
Magidov, D.
, 2007, “Predicting the Onset of Flow Unsteadiness Based on Global Instability,” J. Comput. Phys., 224(2), pp. 924–940.

Fosas de Pando, M. A.
,
Sipp, D.
, and
Schmid, P. J.
, 2012, “Efficient Evaluation of the Direct and Adjoint Linearized Dynamics From Compressible Flow Solvers,” J. Comput. Phys., 231(23), pp. 7739–7755.

Fosas de Pando, M.
,
Schmid, P. J.
, and
Sipp, D.
, 2014, “A Global Analysis of Tonal Noise in Flows Around Aerofoils,” J. Fluid Mech., 754, pp. 5–38.

Meliga, P.
,
Pujals, G.
, and
Serre, E.
, 2012, “Sensitivity of 2-D Turbulent Flow Past a D-Shaped Cylinder Using Global Stability,” Phys. Fluids, 24(6), p. 061701.

Mettot, C.
,
Sipp, D.
, and
Bézard, H.
, 2014, “
Quasi-Laminar Stability and Sensitivity Analyses for Turbulent Flows: Prediction of Low-Frequency Unsteadiness and Passive Control,” Phys. Fluids, 26(4), p. 045112.

Reynolds, W. C.
, and
Hussain, K. M. F.
, 1972, “The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments,” J. Fluid Mech., 54(2), pp. 263–288.

Tammisola, O.
, and
Juniper, M. P.
, 2016, “Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes,” J. Fluid Mech., 792, pp. 620–657.

Camarri, S.
,
Fallenius, B. E. G.
, and
Fransson, J. H. M.
, 2013, “Stability Analysis of Experimental Flow Fields Behind a Porous Cylinder for the Investigation of the Large-Scale Wake Vortices,” J. Fluid Mech., 715, pp. 499–536.

Camarri, S.
,
Trip, R.
, and
Fransson, J. H. M.
, 2017, “Investigation of Passive Control of the Wake Past a Thick Plate by Stability and Sensitivity Analysis of Experimental Data,” J. Fluid Mech., 828, pp. 753–778.

Wang, Q.
, and
Gao, J.
, 2012, “The Drag-Adjoint Field of a Circular Cylinder Wake at Reynolds Numbers 20, 100 and 500,” J. Fluid Mech., 730, pp. 145–161.

Pilyugin, S. Y.
, 2006, Shadowing in Dynamical Systems, Springer, Berlin.

Palmer, K. J.
, 2009, “Shadowing Lemma for Flows,” Scholarpedia, 4(4), p. 7918.

Wang, Q.
, 2013, “Forward and Adjoint Sensitivity Computation of Chaotic Dynamical Systems,” J. Comput. Phys., 235, pp. 1–13.

Wang, Q.
,
Hu, R.
, and
Blonigan, P.
, 2014, “Least Squares Shadowing Sensitivity Analysis of Chaotic Limit Cycle Oscillations,” J. Comput. Phys., 267, pp. 210–224.

Wang, Q.
, 2014, “Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages,” SIAM J. Numer. Anal., 52(1), pp. 156–170.

Blonigan, P.
,
Gomez, S.
, and
Wang, Q.
, 2014, “Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows,” AIAA Paper No. 2014-1426.

Blonigan, P. J.
, and
Wang, Q.
, 2014, “Probability Density Adjoint for Sensitivity Analysis of the Mean of Chaos,” J. Comput. Phys., 270, pp. 660–686.

Ni, A.
, and
Wang, Q.
, 2017, “Sensitivity Analysis on Chaotic Dynamical Systems by Non-Intrusive Least Squares Shadowing (NILSS),” J. Comput. Phys., 347, pp. 56–77.

Chater, M.
,
Ni, A.
, and
Wang, Q.
, 2017, “Simplified Least Squares Shadowing Sensitivity Analysis for Chaotic ODEs and PDEs,” J. Comput. Phys., 329, pp. 126–140.

Blonigan, P. J.
, 2017, “Adjoint Sensitivity Analysis of Chaotic Dynamical Systems With Non-Intrusive Least Squares Shadowing,” J. Comput. Phys., 348, pp. 803–826.

Kim, J.
,
Bodony, D. J.
, and
Freund, J. B.
, 2014, “
Adjoint-Based Control of Loud Events in a Turbulent Jet,” J. Fluid Mech., 741, pp. 28–59.

Caeiro, F.
,
Sovardi, C.
,
Förner, K.
, and
Polifke, W.
, 2017, “Shape Optimization of a Helmholtz Resonator Using an Adjoint Method,” Int. J. Spray Combust. Dyn., 9(4), pp. 394–408.

Sipp, D.
,
Marquet, O.
,
Meliga, P.
, and
Barbagallo, A.
, 2010, “Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach,” ASME Appl. Mech. Rev., 63(3), p. 030801.

Luchini, P.
, and
Bottaro, A.
, 2014, “Adjoint Equations in Stability Analysis,” Annu. Rev. Fluid Mech., 46(1), pp. 493–517.

Camarri, S.
, 2015, “Flow Control Design Inspired by Linear Stability Analysis,” Acta Mech., 226(4), pp. 979–1010.

Chandler, G. J.
,
Juniper, M. P.
,
Nichols, J. W.
, and
Schmid, P. J.
, 2012, “Adjoint Algorithms for the Navier–Stokes Equations in the Low Mach Number Limit,” J. Comput. Phys., 231(4), pp. 1900–1916.

Qadri, U. A.
,
Chandler, G. J.
, and
Juniper, M. P.
, 2015, “
Self-Sustained Hydrodynamic Oscillations in Lifted Jet Diffusion Flames: Origin and Control,” J. Fluid Mech., 775, pp. 201–222.

Emerson, B.
,
Lieuwen, T.
, and
Juniper, M. P.
, 2016, “Local Stability Analysis and Eigenvalue Sensitivity of Reacting Bluff-Body Wakes,” J. Fluid Mech., 788, pp. 549–575.

Sandu, A.
,
Daescu, D. N.
, and
Carmichael, G. R.
, 2003, “Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems With KPP—Part I: Theory and Software Tools,” Atmos. Environ., 37(36), pp. 5083–5096.

Goodwin, D. G.
,
Moffat, H. K.
, and
Speth, R. L.
, 2017, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” accessed Feb. 26, 2019,

http://www.cantera.org
Wang, Q.
,
Duraisamy, K.
,
Alonso, J. J.
, and
Iaccarino, G.
, 2012, “Risk Assessment of Scramjet Unstart Using Adjoint-Based Sampling Methods,” AIAA J., 50(3), pp. 581–592.

Braman, K.
,
Oliver, T. A.
, and
Raman, V.
, 2015, “
Adjoint-Based Sensitivity Analysis of Flames,” Combust. Theory Modell., 19(1), pp. 29–56.

Duraisamy, K.
, and
Alonso, J.
, 2012, “Adjoint Based Techniques for Uncertainty Quantification in Turbulent Flows With Combustion,” AIAA Paper No. 2012-2711.

Yumuşak, M.
, and
Eyi, S.
, 2012, “Design Optimization of Rocket Nozzles in Chemically Reacting Flows,” Comput. Fluids, 65, pp. 25–34.

Copeland, S. R.
,
Palacios, F.
, and
Alonso, J. J.
, 2014, “
Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows,” AIAA Paper No. 2014-0513.

Lemke, M.
,
Reiss, J.
, and
Sesterhenn, J.
, 2013, “
Adjoint-Based Analysis of Thermoacoustic Coupling,” AIP Conf. Proc., 1588(1), pp. 2163–2166.

Lemke, M.
,
Reiss, J.
, and
Sesterhenn, J.
, 2014, “Adjoint Based Optimisation of Reactive Compressible Flows,” Combust. Flame, 161(10), pp. 2552–2564.

Sashittal, P.
,
Sayadi, T.
,
Schmid, P. J.
,
Jang, I.
, and
Magri, L.
, 2016, “
Adjoint-Based Sensitivity Analysis for a Reacting Jet in Crossflow,” Center for Turbulence Research, Summer Program, Stanford, CA, June 26–July 22, pp. 375–384.

Qadri, U. A.
,
Magri, L.
,
Ihme, M.
, and
Schmid, P. J.
, 2016, “Optimal Ignition Placement in Diffusion Flames by Nonlinear Adjoint Looping,” Center for Turbulence Research, Summer Program, Stanford, CA, June 26–July 22, pp. 95–104.

Blanchard, M.
,
Schmid, P. J.
,
Sipp, D.
, and
Schuller, T.
, 2016, “Pressure Wave Generation From Perturbed Premixed Flames,” J. Fluid Mech., 797, pp. 231–246.

Skene, C. S.
, and
Schmid, P. J.
, 2019, “
Adjoint-Based Parametric Sensitivity Analysis for Swirling M-Flames,” J. Fluid Mech., 859, pp. 516–542.

Capecelatro, J.
,
Bodony, D. J.
, and
Freund, J. B.
, 2018, “
Adjoint-Based Sensitivity and Ignition Threshold Mapping in a Turbulent Mixing Layer,” Combust. Theory Modell. (epub).

Magri, L.
, and
Juniper, M. P.
, 2013, “Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach,” J. Fluid Mech., 719, pp. 183–202.

Magri, L.
, and
Juniper, M. P.
, 2014, “
Adjoint-Based Linear Analysis in Reduced-Order Thermo-Acoustic Models,” Int. J. Spray Combust. Dyn., 6(3), pp. 225–246.

Rigas, G.
,
Jamieson, N. P.
,
Li, L. K. B.
, and
Juniper, M. P.
, 2016, “Experimental Sensitivity Analysis and Control of Thermoacoustic Systems,” J. Fluid Mech., 787, p. R1.

Jamieson, N. P.
,
Rigas, G.
, and
Juniper, M. P.
, 2017, “Experimental Sensitivity Analysis Via a Secondary Heat Source in an Oscillating Thermoacoustic System,” Int. J. Spray Combust. Dyn., 9(4), pp. 230–240.

Jamieson, N. P.
, and
Juniper, M. P.
, 2017, “Experimental Sensitivity Analysis and the Equivalence of Pulsed Forcing and Feedback Control in Thermoacoustic Systems,” ASME Paper No. GT2017-63441.

Magri, L.
, and
Juniper, M. P.
, 2014, “Global Modes, Receptivity, and Sensitivity Analysis of Diffusion Flames Coupled With Duct Acoustics,” J. Fluid Mech., 752, pp. 237–265.

Magri, L.
, and
Juniper, M. P.
, 2013, “A Theoretical Approach for Passive Control of Thermoacoustic Oscillations: Application to Ducted Flames,” ASME J. Eng. Gas Turbines Power, 135(9), p. 091604.

Orchini, A.
, and
Juniper, M. P.
, 2016, “Linear Stability and Adjoint Sensitivity Analysis of Thermoacoustic Networks With Premixed Flames,” Combust. Flame, 165, pp. 97–108.

Magri, L.
,
See, Y.-C.
,
Tammisola, O.
,
Ihme, M.
, and
Juniper, M.
, 2017, “
Multiple-Scale Thermo-Acoustic Stability Analysis of a Coaxial Jet Combustor,” Proc. Combust. Inst., 36(3), pp. 3863–3871.

Aguilar, J. G.
,
Magri, L.
, and
Juniper, M. P.
, 2017, “
Adjoint-Based Sensitivity Analysis of Low Order Thermoacoustic Networks Using a Wave-Based Approach,” J. Comput. Phys., 341, pp. 163–181.

Magri, L.
,
Bauerheim, M.
,
Nicoud, F.
, and
Juniper, M. P.
, 2016, “Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification,” J. Comput. Phys., 325, pp. 411–421.

Silva, C. F.
,
Magri, L.
,
Runte, T.
, and
Polifke, W.
, 2016, “Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver,” ASME J. Eng. Gas Turbines Power, 139(1), p.
011901.

Magri, L.
,
Bauerheim, M.
,
Nicoud, F.
, and
Juniper, M. P.
, 2016, “Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity,” J. Comput. Phys., 325, pp. 411–421.

Mensah, G. A.
,
Campa, G.
, and
Moeck, J. P.
, 2016, “Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory,” ASME J. Eng. Gas Turbines Power, 138(8), p.
081502.

Mensah, G. A.
,
Magri, L.
, and
Moeck, J. P.
, 2018, “Methods for the Calculation of Thermoacoustic Stability Margins and Monte Carlo Free Uncertainty Quantification,” ASME J. Eng. Gas Turbines Power, 140(6), p. 061501.

Floquet, G.
, 1883, “Sur Les Équations Différentielles Linéaires à coefficients Périodiques,” Ann. Sci. L'École Norm. Supér., Série 2, 12, pp. 47–88.

Bloch, F.
, 1929, “Über Die Quantenmechanik Der Elektronen in Kristallgittern,” Z. Für Phys., 52(7–8), pp. 555–600.

Mensah, G. A.
, and
Moeck, J. P.
, 2017, “Limit Cycles of Spinning Thermoacoustic Modes in Annular Combustors: A Bloch-Wave and Adjoint-Perturbation Approach,” ASME Paper No. GT2017-64817.

Mensah, G. A.
,
Magri, L.
,
Orchini, A.
, and
Moeck, J. P.
, 2018, “Effects of Asymmetry on Thermoacoustic Modes in Annular Combustors: A Higher-Order Perturbation Study,” ASME Paper No. GT2018-76797.

Mensah, G. A.
, and
Moeck, J. P.
, 2017, “Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study,” ASME J. Eng. Gas Turbines Power, 139(6), p. 061501.

Aguilar, J.
, and
Juniper, M. P.
, 2018, “Adjoint Methods for Elimination of Thermoacoustic Oscillations in a Model Annular Combustor Via Small Geometry Modifications,” ASME Paper No. GT2018-75692.

Aguilar, J.
, and
Juniper, M. P.
, 2018, “Shape Optimization in Low-Order Thermoacoustic Networks,” GPPS Forum 18, Global Power and Propulsion Society, Zurich, Switzerland, Jan. 10–12, Paper No. GPPS–2018–0024.

Silva, C. F.
,
Yong, K. J.
, and
Magri, L.
, 2018, “Thermoacoustic Modes of Quasi-One-Dimensional Combustors in the Region of Marginal Stability,” ASME J. Eng. Gas Turbines Power, 141(2), p. 021022.

Juniper, M. P.
, 2018, “Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers,” Phys. Rev. Fluids, 3, p. 110509.

Boujo, E.
, and
Noiray, N.
, 2017, “Robust Identification of Harmonic Oscillator Parameters Using the Adjoint Fokker-Planck Equation,” Proc. R. Soc. A, 473(2200), p. 20160894.

Noiray, N.
, and
Schuermans, B.
, 2013, “Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors,” Int. J. Non-Linear Mech., 50, pp. 152–163.

Noiray, N.
, 2016, “Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors,” ASME J. Eng. Gas Turbines Power, 139(4), p. 041503.

Noiray, N.
, and
Denisov, A.
, 2017, “A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series,” Proc. Combust. Inst., 36(3), pp. 3843–3850.

Orchini, A.
,
Rigas, G.
, and
Juniper, M. P.
, 2016, “Weakly Nonlinear Analysis of Thermoacoustic Bifurcations in the Rijke Tube,” J. Fluid Mech., 805, pp. 523–550.

Landau, L. D.
, 1944, “On the Problem of Turbulence,” Dokl. Akad. Nauk SSSR, 44(8), pp. 339–349.

Stuart, J. T.
, 1958, “On the Non-Linear Mechanics of Hydrodynamic Stability,” J. Fluid Mech., 4(1), pp. 1–21.

Stuart, J. T.
, 1971, “Nonlinear Stability Theory,” Annu. Rev. Fluid Mech., 3(1), pp. 347–370.

Provansal, M.
,
Mathis, C.
, and
Boyer, L.
, 1987, “
Bénard-von Kármán Instability: Transient and Forced Regimes,” J. Fluid Mech., 182(1), pp. 1–22.

Dušek, J.
,
Le Gal, P.
, and
Fraunié, P.
, 1994, “A Numerical and Theoretical Study of the First Hopf Bifurcation in a Cylinder Wake,” J. Fluid Mech., 264(1), pp. 59–80.

Lieuwen, T.
, 2012, Unsteady Combustor Physics, Cambridge University Press, Cambridge, UK.

Eckstein, J.
, and
Sattelmayer, T.
, 2006, “
Low-Order Modeling of Low-Frequency Combustion Instabilities in AeroEngines,” J. Propul. Power, 22(2), pp. 425–432.

Williams, F. A.
, 1985, Combustion Theory, Perseus Books, Reading, MA.

Kuo, K. K.
, 1986, Principles of Combustion, Wiley, Hoboken, NJ.

Peters, N.
, 2000, Turbulent Combustion, Cambridge University Press, Cambridge, UK.

Poinsot, T.
, and
Veynante, D.
, 2005, Theoretical and Numerical Combustion, 2nd ed.,
R. T. Edwards
, Philadelphia, PA.

Dowling, A. P.
, and
Stow, S. R.
, 2003, “Acoustic Analysis of Gas Turbine Combustors,” J. Propul. Power, 19(5), pp. 751–764.

Magri, L.
, 2017, “On Indirect Noise in Multi-Component Nozzle Flows,” J. Fluid Mech., 828, p. R2.

Magri, L.
,
O'Brien, J.
, and
Ihme, M.
, 2016, “Compositional Inhomogeneities as a Source of Indirect Combustion Noise,” J. Fluid Mech., 799, p. R4.

Nicoud, F.
, and
Wieczorek, K.
, 2009, “About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities,” Int. J. Spray Combust. Dyn., 1(1), pp. 67–111.

Dowling, A. P.
, 1995, “The Calculation of Thermoacoustic Oscillations,” J. Sound Vib., 180(4), pp. 557–581.

Krebs, W.
,
Walz, G.
,
Flohr, P.
, and
Hoffman, S.
, 2001, “Modal Analysis of Annular Combustors: Effect of Burner Impedance,” ASME Paper No. 2001-GT-0042.

Evesque, S.
, and
Polifke, W.
, 2002, “
Low-Order Acoustic Modelling for Annular Combustors: Validation and Inclusion of Modal Coupling,” ASME Paper No. GT-2002-30064.

Camporeale, S. M.
,
Bari, P.
,
David, R.
,
Bottaro, A.
,
Campa, G.
,
Camporeale, S. M.
,
Guaus, A.
,
Favier, J.
,
Bargiacchi, M.
,
Bottaro, A.
,
Cosatto, E.
, and
Mori, M.
, 2011, “A Quantitative Comparison Between a Low Order Model and a 3D FEM Code for the Study of Thermoacoustic Combustion Instabilities,” ASME Paper No. GT2011-45969.

Laera, D.
,
Schuller, T.
,
Prieur, K.
,
Durox, D.
,
Camporeale, S. M.
, and
Candel, S.
, 2017, “Flame Describing Function Analysis of Spinning and Standing Modes in an Annular Combustor and Comparison With Experiments,” Combust. Flame, 184, pp. 136–152.

Rayleigh, J. W. S. B.
, 1896, The Theory of Sound, Vol. 2, Macmillan, London.

Carrier, G. F.
, 1955, “The Mechanics of the Rijke Tube,” Q. Appl. Math., 12(4), pp. 383–395.

Heckl, M. A.
, 1988, “Active Control of the Noise From a Rijke Tube,” J. Sound Vib., 124(1), pp. 117–133.

Dowling, A. P.
, 1997, “Nonlinear Self-Excited Oscillations of a Ducted Flame,” J. Fluid Mech., 346, pp. 271–290.

Schuermans, B. B. H.
,
Polifke, W.
, and
Paschereit, C. O.
, 1999, “Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results,” ASME Paper No. 99-GT-132.

Polifke, W.
,
Poncet, A.
,
Paschereit, C. O.
, and
Döbbeling, K.
, 2001, “Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics,” J. Sound Vib., 245(3), pp. 483–510.

Stow, S. R.
, and
Dowling, A. P.
, 2001, “Thermoacoustic Oscillations in an Annular Combustor,” ASME Paper No. 2001-GT-0037.

Dowling, A. P.
, and
Morgans, A. S.
, 2005, “Feedback Control of Combustion Oscillations,” Annu. Rev. Fluid Mech., 37(1), pp. 151–182.

Morfey, C. L.
, 1973, “Amplification of Aerodynamic Noise by Convected Flow Inhomogeneities,” J. Sound Vib., 31(4), pp. 391–397.

Strobio Chen, L.
,
Bomberg, S.
, and
Polifke, W.
, 2016, “Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front,” Combust. Flame, 166, pp. 170–180.

Bloxsidge, G. J.
,
Dowling, A. P.
, and
Langhorne, P. J.
, 1988, “Reheat Buzz: An Acoustically Coupled Combustion Instability—Part 2: Theory,” J. Fluid Mech., 193(1), pp. 445–473.

Marble, F. E.
, and
Candel, S. M.
, 1977, “Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle,” J. Sound Vib., 55(2), pp. 225–243.

Boileau, M.
,
Staffelbach, G.
,
Cuenot, B.
,
Poinsot, T.
, and
Berat, C.
, 2008, “LES of an Ignition Sequence in a Gas Turbine Engine,” Combust. Flame, 154(1–2), pp. 2–22.

O'Connor, J.
,
Acharya, V.
, and
Lieuwen, T.
, 2015, “Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes,” Prog. Energy Combust. Sci., 49, pp. 1–39.

Bourgouin, J.-F.
,
Durox, D.
,
Moeck, J. P.
,
Schuller, T.
, and
Candel, S.
, 2014, “Characterization and Modeling of a Spinning Thermoacoustic Instability in an Annular Combustor Equipped With Multiple Matrix Injectors,” ASME J. Eng. Gas Turbines Power, 137(2), p. 021503.

Prieur, K.
,
Durox, D.
,
Schuller, T.
, and
Candel, S.
, 2017, “A Hysteresis Phenomenon Leading to Spinning or Standing Azimuthal Instabilities in an Annular Combustor,” Combust. Flame, 175, pp. 283–291.

Laera, D.
,
Prieur, K.
,
Durox, D.
,
Schuller, T.
,
Camporeale, S.
, and
Candel, S.
, 2017, “Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners,” ASME J. Eng. Gas Turbines Power, 139(5), p. 051505.

Stow, S. R.
, and
Dowling, A. P.
, 2004, “
Low-Order Modelling of Thermoacoustic Limit Cycles,” ASME Paper No. GT2004-54245.

Bauerheim, M.
,
Parmentier, J. F.
,
Salas, P.
,
Nicoud, F.
, and
Poinsot, T.
, 2014, “An Analytical Model for Azimuthal Thermoacoustic Modes in an Annular Chamber Fed by an Annular Plenum,” Combust. Flame, 161(5), pp. 1374–1389.

Orchini, A.
,
Mensah, G. A.
, and
Moeck, J. P.
, 2018, “Effects of Nonlinear Modal Interactions on the Thermoacoustic Stability of Annular Combustors,” ASME J. Eng. Gas Turbines Power, 141, p. 021002.

Tyagi, M.
,
Chakravarthy, S. R.
, and
Sujith, R. I.
, 2007, “Unsteady Combustion Response of a Ducted Non-Premixed Flame and Acoustic Coupling,” Combust. Theory Modell., 11(2), pp. 205–226.

Tyagi, M.
,
Jamadar, N.
, and
Chakravarthy, S.
, 2007, “Oscillatory Response of an Idealized Two-Dimensional Diffusion Flame: Analytical and Numerical Study,” Combust. Flame, 149(3), pp. 271–285.

Magina, N. A.
, and
Lieuwen, T. C.
, 2016, “Effect of Axial Diffusion on the Response of Diffusion Flames to Axial Flow Perturbations,” Combust. Flame, 167, pp. 395–408.

Dowling, A. P.
, 1999, “A Kinematic Model of a Ducted Flame,” J. Fluid Mech., 394, pp. 51–72.

Schuller, T.
,
Ducruix, S.
,
Durox, D.
, and
Candel, S.
, 2002, “Modeling Tools for the Prediction of Premixed Flame,” Proc. Combust. Inst., 29(1), pp. 107–113.

Lieuwen, T.
, 2005, “Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances,” Proc. Combust. Inst., 30(2), pp. 1725–1732.

Preetham, S. H.
, and
Lieuwen, T. C.
, 2007, “Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing,” Proc. Combust. Inst., 31(1), pp. 1427–1434.

Balachandran, R.
,
Ayoola, B. O.
,
Kaminski, C. F.
,
Dowling, A. P.
, and
Mastorakos, E.
, 2005, “Experimental Investigation of the Non Linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations,” Combust. Flame, 143(1–2), pp. 37–55.

Noiray, N.
,
Durox, D.
,
Schuller, T.
, and
Candel, S.
, 2008, “A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function,” J. Fluid Mech., 615, pp. 139–167.

Crocco, L.
, and
Cheng, S.-I.
, 1956, “Theory of Combustion Instability in Liquid Propellant Rocket Motors,” The Advisory Group for Aeronautical Research and Development North Atlantic Treaty Organization, Butterworths Scientific Publications, Oxford, UK.

Summerfield, M.
, 1951, “A Theory of Unstable Combustion in Liquid Propellant Rocket Systems,” J. Am. Rocket Soc., 21(5), pp. 108–114.

Crocco, L.
, 1969, “Research on Combustion Instability in Liquid Propellant Rockets,” Symp. (Int.) Combust., 12(1), pp. 85–99.

Sirignano, W. A.
, 2015, “Driving Mechanisms for Combustion Instability,” Combust. Sci. Technol., 187(1–2), pp. 162–205.

Kashinath, K.
,
Hemchandra, S.
, and
Juniper, M. P.
, 2013, “Nonlinear Thermoacoustics of Ducted Premixed Flames: The Influence of Perturbation Convection Speed,” Combust. Flame, 160(12), pp. 2856–2865.

Friedman, A.
, and
Shinbrot, M.
, 1968, “Nonlinear Eigenvalue Problems,” Acta Math., 121, pp. 77–125.

Mennicken, R.
, and
Möller, M.
, 2003, Non-Self-Adjoint Boundary Eigenvalue Problems, Vol. 192, Gulf Professional Publishing, Houston, TX.

Mehrmann, V.
, and
Voss, H.
, 2004, “Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods,” GAMM Mitt., 27(2), pp. 121–152.

Betcke, T.
,
Higham, N. J.
,
Mehrmann, V.
,
Schröder, C.
, and
Tisseur, F.
, 2013, “NLEVP: A Collection of Nonlinear Eigenvalue Problems,” ACM Trans. Math. Software (TOMS), 39(2), p. 1.

Güttel, S.
, and
Tisseur, F.
, 2017, “The Nonlinear Eigenvalue Problem,” Acta Numer., 26, pp. 1–94.

Schuermans, B.
,
Bellucci, V.
, and
Paschereit, C. O.
, 2003, “Thermoacoustic Modeling and Control of Multiburner Combustion Systems,” ASME Paper No. GT2003-38688.

Bothien, M. R.
,
Moeck, J. P.
,
Lacarelle, A.
, and
Paschereit, C. O.
, 2007, “Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems,” Proc. Inst. Mech. Eng., Part A, 221(5), pp. 657–668.

Emmert, T.
,
Meindl, M.
,
Jaensch, S.
, and
Polifke, W.
, 2016, “Linear State Space Interconnect Modeling of Acoustic Systems,” Acta Acust. United Acust., 102(5), pp. 824–833.

Heiss, W. D.
, 2004, “Exceptional Points of Non-Hermitian Operators,” J. Phys. A: Math. General, 37(6), pp. 2455–2464.

Mensah, G.
,
Magri, L.
,
Silva, C.
,
Buschmann, P.
, and
Moeck, J.
, 2018, “Exceptional Points in the Thermoacoustic Spectrum,” J. Sound Vib., 433, pp. 124–128.

Hryniv, R.
, and
Lancaster, P.
, 1999, “On the Perturbation of Analytic Matrix Functions,” Integr. Equations Operator Theory, 34(3), pp. 325–338.

Roman, J. E.
,
Campos, C.
,
Romero, E.
, and
Tomás, A.
, 2015, “SLEPc User's Manual,” D. Sistemes Informàtics i Computació Universitat Politècnica de València, Valencia, Spain, Report No. DSIC-II/24/02.

Buschmann, P.
,
Mensah, G. A.
,
Nicoud, F.
, and
Moeck, J. P.
, 2019, “Solution of Thermoacoustic Eigenvalue Problems With a Non-Iterarive Method,” ASME Paper No. GT2019-90834.

Chandramoorthy, N.
,
Wang, Q.
,
Magri, L.
,
Narayanan, S. H. K.
, and
Hovland, P.
, 2017, “Sensitivity Analysis of Hydrodynamic Chaos in Combustion Using NILSS-AD,” APS Division of Fluid Dynamics Meeting Abstracts.

Dennery, P.
, and
Krzywicky, A.
, 1996, Mathematics for Physicists, Dover Publications, Mineola, NY.

Vogel, C. R.
, and
Wade, J. G.
, 1995, “Analysis of Costate Discretizations in Parameter-Estimation for Linear Evolution-Equations,” SIAM J. Control Optim., 33(1), pp. 227–254.

Bewley, T. R.
, 2001, “Flow Control: New Challenges for a New Renaissance,” Prog. Aerosp. Sci., 37(1), pp. 21–58.

Giles, M. B.
, and
Pierce, N. A.
, 2000, “An Introduction to the Adjoint Approach to Design,” Flow, Turbul. Combust., 65(3/4), pp. 393–415.

Pierce, N. A.
, and
Giles, M. B.
, 2004, “Adjoint and Defect Error Bounding and Correction for Functional Estimates,” J. Comput. Phys., 200(2), pp. 769–794.

Hartmann, R.
, 2007, “Adjoint Consistency Analysis of Discontinuous Galerkin Discretizations,” SIAM J. Numer. Anal., 45(6), pp. 2671–2696.

Berg, J.
, and
Nordström, J.
, 2013, “On the Impact of Boundary Conditions on Dual Consistent Finite Difference Discretizations,” J. Comput. Phys., 236(1), pp. 41–55.

Oden, J. T.
, 1979, Applied Functional Analysis, Prentice Hall, Upper Saddle River, NJ.

Kato, T.
, 1980, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin.

Schrödinger, E.
, 1928, Collected Papers on Wave Mechanics, Blackie & Son Limited, Glasgow, UK.

Vishik, M. I.
, and
Lyusternik, L. A.
, 1960, “The Solution of Some Perturbation Problems for Matrices and Self-Adjoint or Non-Self-Adjoint Differential Equations—I,” Russ. Math. Surv., 15(3), p. 1.

Langer, H.
, and
Najman, B.
, 1989, “Remarks on the Perturbation of Analytic Matrix Functions—II,” Integr. Equations Operator Theory, 12(3), pp. 392–407.

Sun, J.-G.
, 1990, “Multiple Eigenvalue Sensitivity Analysis,” Linear Algebra Appl., 137, pp. 183–211.

Langer, H.
, and
Najman, B.
, 1992, “Remarks on the Perturbation of Analytic Matrix Functions—III,” Integr. Equations Operator Theory, 15(5), pp. 796–806.

Lancaster, P.
,
Markus, A. S.
, and
Zhou, F.
, 2003, “Perturbation Theory for Analytic Matrix Functions: The Semisimple Case,” SIAM J. Matrix Anal. Appl., 25(3), pp. 606–626.

Seyranian, A. P.
, and
Mailybaev, A. A.
, 2003, “Interaction of Eigenvalues in Multi-Parameter Problems,” J. Sound Vib., 267(5), pp. 1047–1064.

Seyranian, A. P.
,
Kirillov, O. N.
, and
Mailybaev, A. A.
, 2005, “Coupling of Eigenvalues of Complex Matrices at Diabolic and Exceptional Points,” J. Phys. A: Math. General, 38(8), p. 1723.

Evesque, S.
,
Polifke, W.
, and
Pankiewitz, C.
, 2003, “Spinning and Azimuthally Standing Acoustic Modes in Annular Combustors,” AIAA Paper No. 2003-3182.

Moeck, J. P.
,
Paul, M.
, and
Paschereit, C. O.
, 2010, “Thermoacoustic Instabilities in an Annular Rijke Tube,” ASME Paper No. GT2010-23577.

Moeck, J. P.
, 2010, “Analysis, Modeling, and Control of Thermoacoustic Instabilities,” Ph.D. thesis, Technischen Universität Berlin, Berlin.

https://d-nb.info/1010103857/34
Noiray, N.
,
Bothien, M.
, and
Schuermans, B.
, 2011, “Investigation of Azimuthal Staging Concepts in Annular Gas Turbines,” Combust. Theory Modell., 15(5), pp. 585–606.

Noiray, N.
, and
Schuermans, B.
, 2013, “On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers,” Proc. R. Soc. A, 469(2151), p. 20120535.

Ghirardo, G.
, and
Juniper, M. P.
, 2013, “Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes,” Proc. R. Soc. A, 469(2157), p. 20130232.

Bauerheim, M.
,
Nicoud, F.
, and
Poinsot, T.
, 2016, “Progress in Analytical Methods to Predict and Control Azimuthal Combustion Instability Modes in Annular Chambers,” Phys. Fluids, 28(2), p. 021303.

Ghirardo, G.
,
Juniper, M. P.
, and
Moeck, J. P.
, 2016, “Weakly Nonlinear Analysis of Thermoacoustic Instabilities in Annular Combustors,” J. Fluid Mech., 805, pp. 52–87.

Bauerheim, M.
,
Ndiaye, A.
,
Constantine, P.
,
Moreau, S.
, and
Nicoud, F.
, 2016, “Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective,” J. Fluid Mech., 789, pp. 534–566.

Ghirardo, G.
,
Di Giovine, C.
,
Moeck, J. P.
, and
Bothien, M. R.
, 2018, “Thermoacoustics of Can-Annular Combustors,” ASME Paper No. GT2018-75799.

Balaji, C.
, and
Chakravarthy, S. R.
, 2011, “Formulation of Combustion Acoustic Interaction Using Simultaneous Multiple Time and Length Scales and Combustion Instability Prediction in Turbulent Non-Premixed Half Dump Combustor,” 18th International Congress on Sound and Vibration (ICSV), Rio de Janeiro, Brazil, July 10–14.

Lighthill, J.
, 1978, “Acoustic Streaming,” J. Sound Vib., 61(3), pp. 391–418.

Mariappan, S.
, and
Sujith, R. I.
, 2011, “Modelling Nonlinear Thermoacoustic Instability in an Electrically Heated Rijke Tube,” J. Fluid Mech., 680, pp. 511–533.

Chu, B. T.
, and
Kovásznay, L. S. G.
, 1958, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas,” J. Fluid Mech., 3(5), pp. 494–514.

Silva, C. F.
, and
Polifke, W.
, 2019, “
Non-Dimensional Groups for Similarity Analysis of Thermoacoustic Instabilities,” Proc. Combust. Inst., 37(4), pp. 5289–5297.

Mukherjee, N.
, and
Shrira, V.
, 2017, “Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model,” Combust. Flame, 185, pp. 188–209.

Steele, R. C.
,
Cowell, L. H.
,
Cannon, S. M.
, and
Smith, C. S.
, 1999, “Passive Control of Combustion Instability in Lean Premixed Combustors,” ASME Paper No. 99-GT-52.

Mongia, H. C.
,
Held, T. J.
,
Hsiao, G. C.
, and
Pandalai, R. P.
, 2003, “Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors,” J. Propul. Power, 19(5), pp. 822–829.

Richards, G. A.
,
Straub, D. L.
, and
Robey, E. H.
, 2003, “Passive Control of Combustion Dynamics in Stationary Gas Turbines,” J. Propul. Power, 19(5), pp. 795–810.

Sohn, C. H.
, and
Park, J. H.
, 2011, “A Comparative Study on Acoustic Damping Induced by Half-Wave, Quarter-Wave, and Helmholtz Resonators,” Aerosp. Sci. Technol., 15(8), pp. 606–614.

Noiray, N.
, and
Schuermans, B.
, 2012, “Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations,” J. Sound Vib., 331(12), pp. 2753–2763.

Ghirardo, G.
,
Boudy, F.
, and
Bothien, M. R.
, 2018, “Amplitude Statistics Prediction in Thermoacoustics,” J. Fluid Mech., 844, pp. 216–246.

Yang, D.
,
Sogaro, F. M.
,
Morgans, A. S.
, and
Schmid, P. J.
, 2019, “Optimising the Acoustic Damping of Multiple Helmholtz Resonators Attached to a Thin Annular Duct,” J. Sound Vib., 444, pp. 69–84.

Park, I. S.
, and
Sohn, C. H.
, 2010, “Nonlinear Acoustic Damping Induced by a Half-Wave Resonator in an Acoustic Chamber,” Aerosp. Sci. Technol., 14(6), pp. 442–450.

Jamieson, N. P.
, and
Juniper, M. P.
, 2017, “Experimental Sensitivity Analysis of a Linearly Stable Thermoacoustic System Via a Pulsed Forcing Technique,” Exp. Fluids, 58(9), p. 123.

Aguilar, J. G.
, 2018, “Sensitivity Analysis and Optimization in Low Order Thermoacoustic Models,” Ph.D. thesis, University of Cambridge, Cambridge, UK.

Giusti, A.
,
Magri, L.
, and
Zedda, M.
, 2018, “Flow Inhomogeneities in a Realistic Aeronautical Gas-Turbine Combustor: Formation, Evolution and Indirect Noise,” ASME Paper No. GT2018-76436.

Chu, B. T.
, 1963, “Analysis of a Self-Sustained Thermally Driven Nonlinear Vibration,” Phys. Fluids, 6(11), p. 1638.

Yu, H.
,
Jaravel, T.
,
Juniper, M.
,
Ihme, M.
, and
Magri, L.
, 2019, “Data Assimilation and Optimal Calibration in Nonlinear Models of Flame Dynamics,” ASME Paper No. GT2019-92052.

Traverso, T.
,
Bottaro, A.
, and
Magri, L.
, 2018, “Data Assimilation in Thermoacoustic Instability With Lagrangian Optimization,” EuroMech, Vienna, Austria, Sept. 9–13.

Jaynes, E. T.
, 1957, “Information Theory and Statistical Mechanics,” Phys. Rev., 106(4), pp. 620–630.

Constantine, P.
, 2015, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Palies, P.
,
Durox, D.
,
Schuller, T.
, and
Candel, S.
, 2010, “The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames,” Combust. Flame, 157(9), pp. 1698–1717.

Palies, P.
,
Durox, D.
,
Schuller, T.
, and
Candel, S.
, 2011, “Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames,” Combust. Flame, 158(10), pp. 1980–1991.

Silva, C. F.
,
Nicoud, F.
,
Schuller, T.
,
Durox, D.
, and
Candel, S.
, 2013, “Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor,” Combust. Flame, 160(9), pp. 1743–1754.

Stow, S. R.
, and
Dowling, A. P.
, 2003, “Modelling of Circumferential Modal Coupling Due to Helmholtz Resonators,” ASME Paper No. GT2003-38168.

Bonciolini, G.
,
Ebi, D.
,
Boujo, E.
, and
Noiray, N.
, 2018, “Experiments and Modelling of Rate-Dependent Transition Delay in a Stochastic Subcritical Bifurcation,” R. Soc. Open Sci., 5(3), p. 172078.

Shroff, G. M.
, and
Keller, H. B.
, 1993, “Stabilization of Unstable Procedures: The Recursive Projection Method,” SIAM J. Num. Anal., 30(4), pp. 1099–1120.

Waugh, I.
,
Illingworth, S.
, and
Juniper, M.
, 2013, “
Matrix-Free Continuation of Limit Cycles for Bifurcation Analysis of Large Thermoacoustic Systems,” J. Comput. Phys., 240, pp. 225–247.

Citro, V.
,
Luchini, P.
,
Giannetti, F.
, and
Auteri, F.
, 2017, “Efficient Stabilization and Acceleration of Numerical Simulation of Fluid Flows by Residual Recombination,” J. Comp. Phys., 344, pp. 234–246.

Magri, L.
, and
Wang, Q.
, 2017, “Stability, Receptivity and Sensitivity of Linear, Periodic and Chaotic Flows: Application to a Thermoacoustic System,” APS Division of Fluid Dynamics Meeting Abstracts.

McManus, K. R.
,
Poinsot, T.
, and
Candel, S. M.
, 1993, “A Review of Active Control of Combustion Instabilities,” Prog. Energy Combust. Sci., 19(1), pp. 1–29.

Friedman, B.
, and
Mishoe, L. I.
, 1956, “Eigenfunction Expansions Associated With a Non-Self-Adjoint Differential Equation,” Pacific J. Math., 6(2), pp. 249–270.

Sirkes, Z.
, and
Tziperman, E.
, 1997, “Finite Difference of Adjoint or Adjoint of Finite Difference?,” Mon. Weather Rev., 125(12), pp. 3373–3378.

Errico, R. M.
, 1997, “What is an Adjoint Model?,” Bull. Am. Meteorol. Soc., 78(11), pp. 2577–2591.

Plessix, R. E.
, 2006, “A Review of the Adjoint-State Method for Computing the Gradient of a Functional With Geophysical Applications,” Geophys. J. Int., 167(2), pp. 495–503.

Estep, D. J.
, 2004, “A Short Course on Duality, Adjoint Operators, Green's Functions, and a Posteriori Error Analysis,” Course Notes, Colorado State University, Fort Collins, CO.

Ibragimov, N. H.
, 2006, “Integrating Factors, Adjoint Equations and Lagrangians,” J. Math. Anal. Appl., 318(2), pp. 742–757.

Giles, M. B.
, and
Süli, E.
, 2002, “Adjoint Methods for PDEs: A Posteriori Error Analysis and Postprocessing by Duality,” Acta Numer., 11, pp. 145–236.

Claerbout, J.
, 2014, Geophysical Image Estimation by Example, Jon Claerbaut, Stanford, CA.