Phillips,
N. A.
, 1959, “
An Example of Nonlinear Computational Instability,” The Atmosphere and the Sea in Motion,
Rockefeller Institute Press, Oxford University Press,
Oxford, UK, pp. 501–504.

Lorenz,
E. N.
, 1960, “
Energy and Numerical Weather Prediction,” Tellus,
12(4), pp. 364–373.

Bryan,
K.
, 1966, “
A Scheme for Numerical Integration of the Equations of Motion on an Irregular Grid Free of Nonlinear Instability,” Mon. Weather Rev.,
94(1), pp. 39–40.

Perot,
J. B.
, 2011, “
Discrete Conservation Properties of Unstructured Mesh Schemes,” Annu. Rev. Fluid. Mech.,
43(1), pp. 299–318.

Koren,
B.
,
Abgrall,
R.
,
Bochev,
P.
,
Frank,
J.
, and
Perot,
B.
, 2013, “
Physics–Compatible Numerical Methods,” J. Comput. Phys.,
257(Pt B), p. 1039.

Arakawa,
A.
, 1966, “
Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow—Part I,” J. Comput. Phys.,
1(1), pp. 119–143.

Coppola,
G.
,
Capuano,
F.
, and
de Luca,
L.
, 2017, “
Energy-Preserving Discretizations of the Navier-Stokes Equations. Classical and Modern Approaches,” XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA), Salerno, Italy, Sept. 4–7, pp. 2284–2310.

Sanderse,
B.
, and
Koren,
B.
, 2012, “
Accuracy Analysis of Explicit Runge-Kutta Methods Applied to the Incompressible Navier-Stokes Equations,” J. Comput. Phys.,
231(8), pp. 3041–3063.

Morinishi,
Y.
,
Lund,
T. S.
,
Vasilyev,
O. V.
, and
Moin,
P.
, 1998, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flows,” J. Comput. Phys.,
143(1), pp. 90–124.

Felten,
F.
, and
Lund,
T.
, 2006, “
Kinetic Energy Conservation Issues Associated With the Collocated Mesh Scheme for Incompressible Flow,” J. Comput. Phys.,
215(2), pp. 465–484.

Verstappen,
R. W. C. P.
, and
Veldman,
A. E. P.
, 2003, “
Symmetry—Preserving Discretization of Turbulent Flow,” J. Comput. Phys.,
187(1), pp. 343–368.

Lele,
S. K.
, 1992, “
Compact Finite Difference Schemes With Spectral–Like Resolution,” J. Comput. Phys.,
103(1), pp. 16–42.

Horiuti,
K.
, 1987, “
Comparison of Conservative and Rotational Forms in Large Eddy Simulation of Turbulent Channel Flow,” J. Comput. Phys,
71(2), pp. 343–370.

Blaisdell,
G. A.
,
Spyropoulos,
E. T.
, and
Qin,
J. H.
, 1996, “
The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods,” Appl. Numer. Math.,
21(3), pp. 207–219.

Kravhcenko,
A. G.
, and
Moin,
P.
, 1997, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows,” J. Comput. Phys.,
131, pp. 310–322.

Laizet,
S.
, and
Lamballais,
E.
, 2009, “
High-Order Compact Schemes for Incompressible Flows: A Simple and Efficient Method With Quasi-Spectral Accuracy,” J. Comput. Phys.,
228(16), pp. 5989–6015.

Gibson,
J. F.
, 2014, “
Channel flow: A Spectral Navier-Stokes Simulator in C++,” University of New Hampshire, Durham, NH.

Mahesh,
K.
,
Constantinescu,
G.
, and
Moin,
P.
, 2004, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries,” J. Comput. Phys.,
197(1), pp. 215–240.

Vallefuoco,
D.
,
Capuano,
F.
, and
Coppola,
G.
, 2019, “
Discrete Conservation of Helicity in Numerical Simulations of Incompressible Turbulent Flows,” Direct and Large-Eddy Simulation XI, Vol.
25,
Springer,
Cham, Switzerland, pp. 17–22.

Brachet,
M. E.
,
Meiron,
D. I.
,
Orszag,
S. A.
,
Nickel,
B. G.
,
Morf,
R. H.
, and
Frisch,
U.
, 1983, “
Small-Scale Structure of the Taylor-Green Vortex,” J. Fluid Mech.,
130(1), pp. 411–452.

Canuto,
C.
,
Hussaini,
M.
,
Quarteroni,
A.
, and
Zang,
T.
, 2006, Spectral Methods. Fundamentals in Single Domains,
Springer, Berlin.

Capuano,
F.
,
Coppola,
G.
,
Balarac,
G.
, and
de Luca,
L.
, 2015, “
Energy Preserving Turbulent Simulations at a Reduced Computational Cost,” J. Comput. Phys.,
298, pp. 480–494.

Germano,
M.
,
Piomelli,
U.
,
Moin,
P.
, and
Cabot,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A,
3(7), pp. 1760–1765.

Harlow,
F.
, and
Welch,
J.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface,” Phys. Fluids,
8(12), pp. 2182–2189.

Ham,
F. E.
,
Lien,
F. S.
, and
Strong,
A. B.
, 2002, “
A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grid,” J. Comput. Phys.,
177(1), pp. 117–133.

Feiereisen,
W. J.
,
Reynolds,
W. C.
, and
Ferziger,
J. H.
, 1981, “
Numerical Simulation of Compressible, Homogeneous Turbulent Shear Flow,” Stanford University, Stanford, CA, Report No. TF-13.

Kennedy,
C. A.
, and
Gruber,
A.
, 2008, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid,” J. Comput. Phys.,
227(3), pp. 1676–1700.

Pirozzoli,
S.
, 2010, “
Generalized Conservative Approximations of Split Convective Derivative Operators,” J. Comput. Phys.,
229(19), pp. 7180–7190.

Coppola,
G.
,
Capuano,
F.
,
Pirozzoli,
S.
, and
de Luca,
L.
, 2019, “
Numerically Stable Formulations of Convective Terms for Turbulent Compressible Flows,” J. Comput. Phys.,
382, pp. 86–104.

Honein,
A. E.
, and
Moin,
P.
, 2004, “
Higher Entropy Conservation and Numerical Stability of Compressible Turbulence Simulations,” J. Comput. Phys.,
201(2), pp. 531–545.

Zang,
T. A.
, 1991, “
On the Rotation and Skew-Symmetric Forms for Incompressible Flow Simulations,” Appl. Numer. Math.,
7(1), pp. 27–40.

Kerr,
R. M.
, 1985, “
Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence,” J. Fluid Mech.,
153(1), pp. 31–58.

Capuano,
F.
,
Coppola,
G.
, and
de Luca,
L.
, 2015, “
An Efficient Time Advancing Strategy for Energy-Preserving Simulations,” J. Comput. Phys.,
295, pp. 209–229.

Capuano,
F.
,
Coppola,
G.
,
Balarac,
G.
,
Bae,
H.
, and
de Luca,
L.
, 2014, “
A Low-Cost Time-Advancing Strategy for Energy-Preserving Turbulent Simulations,” Summer Program, Center for Turbulence Research Stanford, Stanford, CA, July 6–Aug. 1, pp. 377–386.

Capuano,
F.
,
Coppola,
G.
, and
de Luca,
L.
, 2016, “
Low-Cost Energy-Preserving RK Schemes for Turbulent Simulations,” Progress in Turbulence VI: Proceedings of the iTi Conference on Turbulence 2014,
J. Peinke
,
G. Kampers
,
M. Oberlack
,
M. Wacławczyk
, and
A. Talamelli
, eds.,
Springer International Publishing,
Cham, Switzerland, pp. 65–68.

Pirozzoli,
S.
, 2011, “
Numerical Methods for High-Speed Flows,” Annu. Rev. Fluid Mech.,
43(1), pp. 163–194.

Kaltenbach,
H.-J.
, and
Driller,
D.
, 2001, “
LES of Wall-Bounded Turbulence Based on a 6th-Order Compact Scheme,” Direct and Large-Eddy Simulation IV (ERCOFTAC Series, Vol. 8), B. J. Geurts, R. Friedrich, and O. Métais, eds., Springer, Dordrecht, The Netherlands, pp. 37–44.

Knikker,
R.
, 2009, “
Study of a Staggered Fourth-Order Compact Scheme for Unsteady Incompressible Viscous Flows,” Int. J. Numer. Methods Fluids,
59(10), pp. 1063–1092.

Vasilyev,
O. V.
, 2000, “
High Order Finite Difference Schemes on Non-Uniform Meshes With Good Conservation Properties,” J. Comput. Phys.,
157(2), pp. 746–761.

Verzicco,
R.
, and
Orlandi,
P.
, 1996, “
A Finite Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates,” J. Comput. Phys.,
123(2), pp. 402–414.

Fukagata,
K.
, and
Kasagi,
N.
, 2002, “
Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System,” J. Comput. Phys.,
181(2), pp. 478–498.

Morinishi,
Y.
,
Vasilyev,
O. V.
, and
Ogi,
T.
, 2004, “
Fully Conservative Finite Difference Scheme in Cylindrical Coordinates for Incompressible Flow Simulations,” J. Comput. Phys.,
197(2), pp. 686–710.

Desjardins,
O.
,
Blanquart,
G.
,
Balarac,
G.
, and
Pitsch,
H.
, 2008, “
High Order Conservative Finite Difference Scheme for Variable Density Low Mach Number Turbulent Flows,” J. Comput. Phys.,
227(15), pp. 7125–7159.

Ducros,
F.
,
Laporte,
F.
,
Souleres,
T.
,
Guinot,
V.
,
Moinat,
P.
, and
Caruelle,
B.
, 2000, “
High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows,” J. Comput. Phys.,
161(1), pp. 114–139.

Kok,
J. C.
, 2009, “
A High-Order Low-Dispersion Symmetry-Preserving Finite Volume Method for Compressible Flow on Curvilinear Grids,” J. Comput. Phys.,
228(18), pp. 6811–6832.

Pirozzoli,
S.
, 2011, “
Stabilized Non-Dissipative Approximations of Euler Equations in Generalized Curvilinear Coordinates,” J. Comput. Phys.,
230(8), pp. 2997–3014.

Rozema,
W.
,
Kok,
J. C.
,
Verstappen,
R. W. C. P.
, and
Veldman,
A. E. P.
, 2014, “
A Symmetry-Preserving Discretisation and Regularisation Model for Compressible Flow With Application to Turbulent Channel Flow,” J. Turbul.,
15(6), pp. 386–410.

Brouwer,
J.
,
Reiss,
J.
, and
Sesterhenn,
J.
, 2014, “
Conservative Time Integrators of Arbitrary Order for Skew-Symmetric Finite Difference Discretizations of Compressible Flow,” Comput. Fluids,
100, pp. 1–12.

Morinishi,
Y.
, 2010, “
Skew-Symmetric Form of Convective Terms and Fully Conservative Finite Difference Schemes for Variable Density Low-Mach Number Flows,” J. Comput. Phys.,
229(2), pp. 276–300.

Perot,
B.
, 2000, “
Conservation Properties of Unstructured Staggered Mesh Schemes,” J. Comput. Phys.,
159(1), pp. 58–89.

Zhang,
X.
,
Schmidt,
D.
, and
Perot,
B.
, 2002, “
Accuracy and Conservation Properties of a Three-Dimensional Unstructured Staggered Mesh Scheme for Fluid Dynamics,” J. Comput. Phys.,
175(2), pp. 764–791.

Trias,
F. X.
,
Lehmkuhl,
O.
,
Oliva,
A.
,
Pérez-Segarra,
C. D.
, and
Verstappen,
R. W. C. P.
, 2014, “
Symmetry-Preserving Discretization of Navier-Stokes Equations on Collocated Unstructured Grids,” J. Comput. Phys.,
258, pp. 246–267.

Modesti,
D.
, and
Pirozzoli,
S.
, 2017, “
A Low-Dissipative Solver for Turbulent Compressible Flows on Unstructured Meshes, With Openfoam Implementation,” Comput. Fluids,
152, pp. 14–23.

Svärd,
M.
, and
Nordström,
J.
, 2014, “
Review of Summation-by-Parts Schemes for Initial–Boundary-Value Problems,” J. Comput. Phys.,
268, pp. 17–38.

Fernández,
D. C. D. R.
,
Hicken,
J. E.
, and
Zingg,
D. W.
, 2014, “
Review of Summation-by-Parts Operators With Simultaneous Approximation Terms for the Numerical Solution of Partial Differential Equations,” Comput. Fluids,
95, pp. 171–196.

Sanderse,
B.
,
Verstappen,
R. W. C. P.
, and
Koren,
B.
, 2014, “
Boundary Treatment for Fourth-Order Staggered Mesh Discretizations of the Incompressible Navier–Stokes Equations,” J. Comput. Phys.,
257, pp. 1472–1505.

Olver,
P. J.
, 1982, “
A Nonlinear Hamiltonian Structure for the Euler Equations,” J. Math. Anal. Appl.,
89(1), pp. 233–250.

Moffatt,
H.
, and
Tsinober,
A.
, 1992, “
Helicity in Laminar and Turbulent Flow,” Annu. Rev. Fluid Mech.,
24(1), pp. 281–312.

Palha,
A.
, and
Gerritsma,
M.
, 2017, “
A Mass, Energy, Enstrophy and Vorticity Conserving (MEEVC) Mimetic Spectral Element Discretization for the 2D Incompressible Navier–Stokes Equations,” J. Comput. Phys.,
328, pp. 200–220.

Lee,
D.
,
Palha,
A.
, and
Gerritsma,
M.
, 2017, “
Discrete Conservation Properties for Shallow Water Flows Using Mixed Mimetic Spectral Elements,” J. Comput. Phys.,
357, pp. 282–304.

Liu,
J.-G.
, and
Wang,
W.-C.
, 2004, “
Energy and Helicity Preserving Schemes for Hydro- and Magnetohydro-Dynamics Flows With Symmetry,” J. Comput. Phys.,
200(1), pp. 8–33.

Rebholz,
L. G.
, 2007, “
An Energy- and Helicity-Conserving Finite Element Scheme for the Navier-Stokes Equations,” SIAM J. Numer. Anal.,
45(4), pp. 1622–1638.

Olshanskii,
M. A.
, and
Rebholz,
L. G.
, 2010, “
Velocity–Vorticity–Helicity Formulation and a Solver for the Navier–Stokes Equations,” J. Comput. Phys.,
229(11), pp. 4291–4303.

Olshanskii,
M.
, and
Rebholz,
L. G.
, 2010, “
Note on Helicity Balance of the Galerkin Method for the 3D Navier–Stokes Equations,” Comput. Methods Appl. Mech. Eng.,
199(17–20), pp. 1032–1035.

Capuano,
F.
, and
Vallefuoco,
D.
, 2018, “
Effects of Discrete Energy and Helicity Conservation in Numerical Simulations of Helical Turbulence,” Flow Turbul. Combust.,
101(2), pp. 343–364.

Fuster,
D.
, 2013, “
An Energy Preserving Formulation for the Simulation of Multiphase Turbulent Flows,” J. Comput. Phys.,
235, pp. 114–128.

Morinishi,
Y.
, and
Koga,
K.
, 2014, “
Skew-Symmetric Convection Form and Secondary Conservative Finite Difference Methods for Moving Grids,” J. Comput. Phys.,
257, pp. 1081–1112.

Charnyi,
S.
,
Heister,
T.
,
Olshanskii,
M. A.
, and
Rebholz,
L. G.
, 2017, “
On Conservation Laws of Navier–Stokes Galerkin Discretizations,” J. Comput. Phys.,
337, pp. 289–308.

Pastrana,
D.
,
Cajas,
J.
,
Lehmkuhl,
O.
,
Rodríguez,
I.
, and
Houzeaux,
G.
, 2018, “
Large-Eddy Simulations of the Vortex-Induced Vibration of a Low Mass Ratio Two-Degree-of-Freedom Circular Cylinder at Subcritical Reynolds Numbers,” Comput. Fluids,
173, pp. 118–132.

Moura,
R.
,
Mengaldo,
G.
,
Peirò,
J.
, and
Sherwin,
S.
, 2017, “
On the Eddy-Resolving Capability of High-Order Discontinuous Galerkin Approaches to Implicit LES/Under-Resolved DNS of Euler Turbulence,” J. Comput. Phys.,
330, pp. 615–623.

Gassner,
G. J.
,
Winters,
A. R.
, and
Kopriva,
D. A.
, 2016, “
Split Form Nodal Discontinuous Galerkin Schemes With Summation-by-Parts Property for the Compressible Euler Equations,” J. Comput. Phys.,
327, pp. 39–66.

Gassner,
G. J.
, 2014, “
A Kinetic Energy Preserving Nodal Discontinuous Galerkin Spectral Element Method,” Int. J. Numer. Methods Fluids,
76(1), pp. 28–50.

Winters,
A. R.
,
Moura,
R. C.
,
Mengaldo,
G.
,
Gassner,
G. J.
,
Walch,
S.
,
Peiro,
J.
, and
Sherwin,
S. J.
, 2018, “
A Comparative Study on Polynomial Dealiasing and Split Form Discontinuous Galerkin Schemes for Under-Resolved Turbulence Computations,” J. Comput. Phys.,
372, pp. 1–21.

Capuano,
F.
,
Coppola,
G.
,
Chiatto,
M.
, and
de Luca,
L.
, 2016, “
Approximate Projection Method for the Incompressible Navier-Stokes Equations,” AIAA J.,
54(7), pp. 2178–2181.

Rosenbaum,
J.
, 1976, “
Conservation Properties of Numerical Integration Methods for Systems of Ordinary Differential Equations,” J. Comput. Phys.,
20(3), pp. 259–267.

Iserles,
A.
, and
Zanna,
A.
, 2000, “
Solving ODEs Numerically While Preserving a First Integral,” J. Comput. Appl. Math.,
125(1–2), pp. 69–81.

Hairer,
E.
,
Lubich,
C.
, and
Wanner,
G.
, 2006, Geometric Numerical Integration,
Springer, Berlin.

Rogallo, R. S.
, and
Moin, P.
, 1984, “
Numerical Simulation of Turbulent Flows,” Annu. Rev. Fluid. Mech.,
16(1), pp. 99–137.

Orlandi,
P.
, 2000, Fluid Flow Phenomena: A Numerical Toolkit,
Springer, Dordrecht, The Netherlands.

Griffiths,
D. F.
, and
Higham,
D. J.
, 2010, Numerical Methods for Ordinary Differential Equations,
Springer, London.

Le,
H.
, and
Moin,
P.
, 1991, “
An Improvement of Fractional Step Methods for the Incompressible Navier-Stokes Equations,” J. Comput. Phys.,
92(2), pp. 369–379.

Butcher,
J. C.
, 2004, Numerical Methods for Ordinary Differential Equations,
Wiley, Hoboken, NJ.

Sanz-Serna,
J. M.
, 1988, “
Runge-Kutta Schemes for Hamiltonian Systems,” BIT,
28(4), pp. 877–883.

Sanderse,
B.
, 2013, “
Energy Conserving Runge-Kutta Methods for the Incompressible Navier-Stokes Equations,” J. Comput. Phys.,
233, pp. 100–131.

Duponcheel,
M.
,
Orlandi,
P.
, and
Winckelmans,
G.
, 2008, “
Time-Reversibility of the Euler Equations as a Benchmark for Energy Conserving Schemes,” J. Comput. Phys.,
227(19), pp. 8736–8752.

Verstappen,
R. W. C. P.
, and
Veldman,
A. E. P.
, 1997, “
Direct Numerical Simulation of Turbulence at Lower Costs,” J. Eng. Math.,
32(2/3), pp. 143–159.

Aubry,
A.
, and
Chartier,
P.
, 1998, “
Pseudo-Symplectic Runge-Kutta Methods,” BIT Numer. Math.,
38(3), pp. 439–461.

Capuano,
F.
,
Coppola,
G.
,
Rández,
L.
, and
de Luca,
L.
, 2017, “
Explicit Runge-Kutta Schemes for Incompressible Flow With Improved Energy-Conservation Properties,” J. Comput. Phys.,
328, pp. 86–94.

Calvo,
M.
,
Laburta,
M.
,
Montijano,
J.
, and
Rández,
L.
, 2010, “
Approximate Preservation of Quadratic First Integrals by Explicit Runge-Kutta Methods,” Adv. Comput. Math.,
32(3), pp. 255–274.

Capuano,
F.
,
De Angelis,
E. M.
,
Coppola,
G.
, and
de Luca,
L.
, 2019, “
An Analysis of Time-Integration Errors in Large-Eddy Simulation of Incompressible Turbulent Flows,” Direct and Large-Eddy Simulation XI,
M. Salvetti
,
V. Armenio
,
J. Fröhlich
,
B. Geurts
, and
H. Kuerten
, eds., Vol.
25,
Springer,
Cham, Switzerland, pp. 31–37.

Capuano,
F.
,
Sanderse,
B.
,
De Angelis,
E. M.
, and
Coppola,
G.
, 2017, “
A Minimum-Dissipation Time-Integration Strategy for Large-Eddy Simulation of Incompressible Turbulent Flows,” XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA), Salerno, Italy, Sept. 4–7, pp. 2311–2323.

https://ir.cwi.nl/pub/27216/AIMETA_2017_proceedings_n_5-129-141.pdf
Gottlieb,
S.
,
Shu,
C.-W.
, and
Tadmor,
E.
, 2001, “
Strong Stability-Preserving High-Order Time Discretization Methods,” SIAM Rev.,
43(1), pp. 89–112.

Hu,
F.
,
Hussaini,
M.
, and
Manthey,
J.
, 1996, “
Low-Dissipation and Low-Dispersion Runge–Kutta Schemes for Computational Acoustics,” J. Comput. Phys.,
124(1), pp. 177–191.

Colonius,
T.
, and
Lele,
S. K.
, 2004, “
Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation,” Prog. Aerosp. Sci.,
40(6), pp. 345–416.

Subbareddy,
P. K.
, and
Candler,
G. V.
, 2009, “
A Fully Discrete, Kinetic Energy Consistent Finite Volume Scheme for Compressible Flows,” J. Comput. Phys.,
228(5), pp. 1347–1364.

Canuto,
C.
,
Hussaini,
M.
,
Quarteroni,
A.
, and
Zang,
T.
, 2007, Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics,
Springer, Berlin.

Cook,
A. W.
, and
Cabot,
W. H.
, 2004, “
A High-Wavenumber Viscosity for High-Resolution Numerical Methods,” J. Comput. Phys.,
195(2), pp. 594–601.

Kawai,
S.
, and
Lele,
S. K.
, 2008, “
Localized Artificial Diffusivity Scheme for Discontinuity Capturing on Curvilinear Meshes,” J. Comput. Phys.,
227(22), pp. 9498–9526.

Visbal,
M. R.
, and
Gaitonde,
D. V.
, 2002, “
On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes,” J. Comput. Phys.,
181(1), pp. 155–185.

Visbal,
M. R.
, and
Rizzetta,
D.
, 2002, “
Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes,” ASME J. Fluids Eng.,
124(4), pp. 836–847.

Mittal,
R.
, and
Moin,
P.
, 1997, “
Suitability of Upwind–Biased Finite Difference Schemes for Large–Eddy Simulation of Turbulent Flows,” AIAA J.,
35, pp. 1415–1417.

Ghosal,
S.
, 1996, “
An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence,” J. Comput. Phys.,
125(1), pp. 187–206.

You,
D.
,
Ham,
F.
, and
Moin,
P.
, 2008, “
Discrete Conservation Principles in Large-Eddy Simulation With Application to Separation Control Over an Airfoil,” Phys. Fluids,
20(10), p. 101515.

Davidson,
L.
,
Cokljat,
D.
,
Fröhlich,
J.
,
Leschziner,
M. A.
,
Mellen,
C.
, and
Rodi,
W.
, 2003, LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil: Results of the Project LESFOIL Supported by the European Union 1998–2001, Vol.
83,
Springer Science & Business Media, Berlin.

Schmitt,
V.
, 1979, “
Pressure Distributions on the Onera M6-Wing at Transonic Mach Numbers, Experimental Data Base for Computer Program Assessment,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, Report No. AGARD-AR-138.

Liou,
M.-S.
, and
Steffen,
C. J., Jr.
, 1993, “
A New Flux Splitting Scheme,” J. Comput. Phys.,
107(1), pp. 23–39.

Ducros,
F.
,
Ferrand,
V.
,
Nicoud,
F.
,
Weber,
C.
,
Darracq,
D.
,
Gacherieu,
C.
, and
Poinsot,
T.
, 1999, “
Large-Eddy Simulation of the Shock/Turbulence Interaction,” J. Comput. Phys.,
152(2), pp. 517–549.

Weller,
H. G.
,
Tabor,
G.
,
Jasak,
H.
, and
Fureby,
C.
, 1998, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques,” Comput. Phys.,
12(6), pp. 620–631.

Kurganov,
A.
, and
Tadmor,
E.
, 2000, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection–Diffusion Equations,” J. Comput. Phys.,
160(1), pp. 241–282.

Aljure,
D.
,
Lehmkuhl,
O.
,
Rodríguez,
I.
, and
Oliva,
A.
, 2014, “
Flow and Turbulent Structures Around Simplified Car Models,” Comput. Fluids,
96, pp. 122–135.

Aljure,
D.
,
Calafell,
J.
,
Baez,
A.
, and
Oliva,
A.
, 2018, “
Flow Over a Realistic Car Model: Wall Modeled Large Eddy Simulations Assessment and Unsteady Effects,” J. Wind Eng. Ind. Aerod.,
174, pp. 225–240.

Rodríguez,
I.
,
Lehmkuhl,
O.
,
Borrell,
R.
, and
Oliva,
A.
, 2013, “
Direct Numerical Simulation of a NACA0012 in Full Stall,” Int. J. Heat Fluid Flow,
43, pp. 194–203.

Lehmkuhl,
O.
,
Rodríguez,
I.
,
Borrell,
R.
, and
Oliva,
A.
, 2013, “
Low-Frequency Unsteadiness in the Vortex Formation Region of a Circular Cylinder,” Phys. Fluids,
25(8), p. 085109.

Rozema,
W.
,
Kok,
J. C.
,
Verstappen,
R. W. C. P.
, and
Veldman,
A. E. P.
, 2014, “
DNS and LES of the Compressible Flow Over a Delta Wing With the Symmetry-Preserving Discretization,” ASME Paper No. FEDSM2014-21374.

Pitsch,
H.
, 2006, “
Large-Eddy Simulation of Turbulent Combustion,” Annu. Rev. Fluid Mech.,
38(1), pp. 453–482.

Selle,
L.
,
Lartigue,
G.
,
Poinsot,
T.
,
Koch,
R.
,
Schildmacher,
K.-U.
,
Krebs,
W.
,
Prade,
B.
,
Kaufmann,
P.
, and
Veynante,
D.
, 2004, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes,” Combust. Flame,
137(4), pp. 489–505.

Ham,
F.
, and
Iaccarino,
G.
, 2004, “
Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes,” Annual Research Briefs 2004, Center for Turbulence Research, Stanford University, Stanford, CA, pp. 3–14.

Mahesh,
K.
,
Constantinescu,
G.
,
Apte,
S.
,
Iaccarino,
G.
,
Ham,
F.
, and
Moin,
P.
, 2006, “
Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries,” ASME J. Appl. Mech.,
73(3), pp. 374–381.

Domingo,
P.
,
Vervisch,
L.
, and
Veynante,
D.
, 2008, “
Large-Eddy Simulation of a Lifted Methane Jet Flame in a Vitiated Coflow,” Combust. Flame,
152(3), pp. 415–432.

Petit,
X.
,
Ribert,
G.
,
Lartigue,
G.
, and
Domingo,
P.
, 2013, “
Large-Eddy Simulation of Supercritical Fluid Injection,” J. Supercrit. Fluids,
84, pp. 61–73.

Vuorinen,
V.
,
Keskinen,
J.-P.
,
Duwig,
C.
, and
Boersma,
B.
, 2014, “
On the Implementation of Low-Dissipative Runge-Kutta Projection Methods for Time Dependent Flows Using OpenFOAM^{®},” Comput. Fluids,
93, pp. 153–163.

D'Alessandro,
V.
,
Zoppi,
A.
,
Binci,
L.
, and
Ricci,
R.
, 2016, “
Development of OpenFOAM Solvers for Incompressible Navier–Stokes Equations Based on High-Order Runge-Kutta Schemes,” Int. J. Comput. Methods Exp. Meas.,
4(4), pp. 594–603.