0
Review Article

A Survey on Static Modeling of Miniaturized Pneumatic Artificial Muscles With New Model and Experimental Results

[+] Author and Article Information
K. P. Ashwin

Robotics and Design Lab,
Department of Mechanical Engineering,
Indian Institute of Science,
Bangalore 560012, India
e-mail: ashwinkp@iisc.ac.in

A. Ghosal

Professor
Department of Mechanical Engineering,
Indian Institute of Science,
Bangalore 560012, India
e-mail: asitava@iisc.ac.in

1Corresponding author.

Manuscript received May 1, 2018; final manuscript received October 4, 2018; published online October 24, 2018. Assoc. Editor: Francois Barthelat.

Appl. Mech. Rev 70(4), 040802 (Oct 24, 2018) (20 pages) Paper No: AMR-18-1055; doi: 10.1115/1.4041660 History: Received May 01, 2018; Revised October 04, 2018

Pneumatic artificial muscles (PAMs) are linear pneumatic actuators consisting of a flexible bladder with a set of in-extensible fibers woven as a sheath on the outside. Upon application of pressure, the actuators contract or expand based on the angle of winding of the braid. Due to the similarity in properties of the actuators with biological muscles and the advantages thereof, these are increasingly being used in many robotic systems and mechanisms. This necessitates the development of mathematical models describing their mechanics for optimal design as well as for application in control systems. This paper presents a survey on different mathematical models described in the literature for representing the statics of PAM. Since it is observed that the validity of existing static models, based on energy balance methods, is not consistent with changes in parameters when applied to their miniaturized versions of pneumatic artificial muscles (MPAM), a new model has been proposed. The model takes into account material properties of the bladder as well as the end-effects which are prominent for MPAMs. Experiments conducted on fabricated MPAMs, of different diameters and lengths, show that the proposed model predicts the pressure-deformation characteristics of MPAMs with maximum error of less than 7%.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gaylord, R. H. , 1958, “ Fluid Actuated Motor System and Stroking Device,” U.S. Patent No. 2,844,126.
Joseph, L. , 1960, “ Artificial Muscle,” Life, 14, pp. 87–88.
Pillsbury, T. E. , Kothera, C. S. , and Wereley, N. M. , 2015, “ Effect of Bladder Wall Thickness on Miniature Pneumatic Artificial Muscle Performance,” Bioinspiration Biomimetics, 10(5), p. 055006. [CrossRef]
Festo Didactic, 2018, “Festo Fluidic Muscle,” Festo Didactic, Eatontown, NJ, accessed Apr. 12, 2018, www.festo.com
Takosoglu, J. E. , Laski, P. A. , Blasiak, S. , Bracha, G. , and Pietrala, D. , 2016, “ Determining the Static Characteristics of Pneumatic Muscles,” Meas. Control, 49(2), pp. 62–71. [CrossRef]
De Greef, A. , Lambert, P. , and Delchambre, A. , 2009, “ Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators,” Precis. Eng., 33(4), pp. 311–321. [CrossRef]
Prior, S. D. , Warner, P. R. , White, A. S. , Parsons, J. , and Gill, R. , 1993, “ Actuators for Rehabilitation Robots,” Mechatronics, 3(3), pp. 285–294. [CrossRef]
Takagi, T. , and Sakaguchi, Y. , 1986, “ Pneumatic Actuator for Manipulator,” Bridgestone, Tokyo, Japan, U.S. Patent No. 4,615,260. https://patents.google.com/patent/US4615260
Moers, A. , De Volder, M. , and Reynaerts, D. , 2012, “ Integrated High Pressure Microhydraulic Actuation and Control for Surgical Instruments,” Biomed. Microdev., 14(4), pp. 699–708. [CrossRef]
Ashwin, K. , Jose, D. P. , and Ghosal, A. , 2015, “ Modeling and Analysis of a Flexible End-Effector for Actuating Endoscopic Catheters,” 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, Oct. 25–30, pp. 113–120. http://www.mecheng.iisc.ernet.in/~asitava/IFToMM2015_ashwin.pdf
Le, H. M. , Do, T. N. , and Phee, S. J. , 2016, “ A Survey on Actuators-Driven Surgical Robots,” Sens. Actuators A: Phys., 247, pp. 323–354. [CrossRef]
Noritsugu, T. , and Tanaka, T. , 1997, “ Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot,” IEEE/ASME Trans. Mechatronics, 2(4), pp. 259–267. [CrossRef]
Jamwal, P. K. , Xie, S. Q. , Hussain, S. , and Parsons, J. G. , 2014, “ An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries,” IEEE/ASME Trans. Mechatronics, 19(1), pp. 64–75. [CrossRef]
Andrikopoulos, G. , Nikolakopoulos, G. , and Manesis, S. , 2011, “ A Survey on Applications of Pneumatic Artificial Muscles,” 19th IEEE Mediterranean Conference on Control & Automation (MED), Corfu, Greece, June 20–23, pp. 1439–1446.
Li, H. , Kawashima, K. , Tadano, K. , Ganguly, S. , and Nakano, S. , 2013, “ Achieving Haptic Perception in Forceps Manipulator Using Pneumatic Artificial Muscle,” IEEE/ASME Trans. Mechatronics, 18(1), pp. 74–85. [CrossRef]
Doric, I. , Reitberger, A. , Wittmann, S. , Harrison, R. , and Brandmeier, T. , 2014, “ 1 A Novel Approach for the Test of Active Pedestrian Safety Systems,” IEEE Trans. Intell. Transp. Syst., 18(5), pp. 1299–1312. [CrossRef]
Tjahyono, A. P. , Aw, K. C. , Devaraj, H. , Surendra, W. , Haemmerle, E. , and Travas-Sejdic, J. , 2013, “ A Five-Fingered Hand Exoskeleton Driven by Pneumatic Artificial Muscles With Novel Polypyrrole Sensors,” Ind. Rob: An Int. J., 40(3), pp. 251–260. [CrossRef]
Obiajulu, S. C. , Roche, E. T. , Pigula, F. A. , and Walsh, C. J. , 2013, “ Soft Pneumatic Artificial Muscles With Low Threshold Pressures for a Cardiac Compression Device,” ASME Paper No. DETC2013-13004.
De Volder, M. , Moers, A. , and Reynaerts, D. , 2011, “ Fabrication and Control of Miniature Mckibben Actuators,” Sens. Actuators A: Phys., 166(1), pp. 111–116. [CrossRef]
Chakravarthy, S. , Aditya, K. , and Ghosal, A. , 2014, “ Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle,” ASME J. Med. Devices, 8(4), p. 041011. [CrossRef]
Bryant, M. , Meller, M. A. , and Garcia, E. , 2013, “ Toward Variable Recruitment Fluidic Artificial Muscles,” ASME Paper No. SMASIS2013-3136.
Bryant, M. , Meller, M. A. , and Garcia, E. , 2014, “ Variable Recruitment Fluidic Artificial Muscles: Modeling and Experiments,” Smart Mater. Struct., 23(7), p. 074009. [CrossRef]
Meller, M. A. , Chipka, J. B. , Bryant, M. J. , and Garcia, E. , 2015, “ Modeling of the Energy Savings of Variable Recruitment McKibben Muscle Bundles,” Proc. SPIE, 9429, p. 94290S.
Robinson, R. M. , Kothera, C. S. , and Wereley, N. M. , 2015, “ Variable Recruitment Testing of Pneumatic Artificial Muscles for Robotic Manipulators,” IEEE/ASME Trans. Mechatronics, 20(4), pp. 1642–1652. [CrossRef]
Meller, M. , Chipka, J. , Volkov, A. , Bryant, M. , and Garcia, E. , 2016, “ Improving Actuation Efficiency Through Variable Recruitment Hydraulic Mckibben Muscles: Modeling, Orderly Recruitment Control, and Experiments,” Bioinspiration Biomimetics, 11(6), p. 065004. [CrossRef]
Kurumaya, S. , Nabae, H. , Endo, G. , and Suzumori, K. , 2017, “ Design of Thin Mckibben Muscle and Multifilament Structure,” Sens. Actuators A: Phys., 261, pp. 66–74. [CrossRef]
Wang, B. , Aw, K. C. , Biglari-Abhari, M. , and McDaid, A. , 2016, “ Design and Fabrication of a Fiber-Reinforced Pneumatic Bending Actuator,” IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, July 12–15, pp. 83–88.
McMahan, W. , Chitrakaran, V. , Csencsits, M. , Dawson, D. , Walker, I. D. , Jones, B. A. , Pritts, M. , Dienno, D. , Grissom, M. , and Rahn, C. D. , 2006, “ Field Trials and Testing of the Octarm Continuum Manipulator,” International Conference on Robotics and Automation (ICRA), Orlando, FL, May 15–19, pp. 2336–2341.
Bishop-Moser, J. , Krishnan, G. , and Kota, S. , 2013, “ Force and Moment Generation of Fiber-Reinforced Pneumatic Soft Actuators,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov. 3–7, pp. 4460–4465.
Robinson, R. M. , Kothera, C. S. , and Wereley, N. M. , 2015, “ Quasi-Static Nonlinear Response of Pneumatic Artificial Muscles for Both Agonistic and Antagonistic Actuation Modes,” J. Intell. Mater. Syst. Struct., 26(7), pp. 796–809. [CrossRef]
Robinson, R. M. , Kothera, C. S. , Sanner, R. M. , and Wereley, N. M. , 2016, “ Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles,” IEEE/ASME Trans. Mechatronics, 21(1), pp. 55–68. [CrossRef]
Tondu, B. , 2012, “ Modelling of the Mckibben Artificial Muscle: A Review,” J. Intell. Mater. Syst. Struct., 23(3), pp. 225–253. [CrossRef]
Schulte, H. , 1961, “ The Application of External Power in Prosthetics and Orthotics, the Characteristics of the McKibben Artificial Muscle,” National Research Council, Ottawa, ON, Canada, p. 874.
Das, G. K. H. S. L. , Tondu, B. , Forget, F. , Manhes, J. , Stasse, O. , and Souères, P. , 2016, “ Controlling a Multi-Joint Arm Actuated by Pneumatic Muscles With Quasi-Ddp Optimal Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, Oct. 9–14, pp. 521–528.
Pillsbury, T. E. , Wereley, N. M. , and Guan, Q. , 2017, “ Comparison of Contractile and Extensile Pneumatic Artificial Muscles,” Smart Mater. Struct., 26(9), p. 095034. [CrossRef]
Chou, C. P. , and Hannaford, B. , 1996, “ Measurement and Modeling of Mckibben Pneumatic Artificial Muscles,” IEEE Trans. Rob. Autom., 12(1), pp. 90–102. [CrossRef]
Tondu, B. , and Lopez, P. , 2000, “ Modeling and Control of Mckibben Artificial Muscle Robot Actuators,” IEEE Control Syst., 20(2), pp. 15–38. [CrossRef]
Itto, T. , and Kogiso, K. , 2011, “ Hybrid Modeling of Mckibben Pneumatic Artificial Muscle Systems,” IEEE International Conference on Industrial Technology (ICIT), Auburn, AL, Mar. 14–16, pp. 65–70.
Davis, S. , and Caldwell, D. G. , 2006, “ Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators,” Int. J. Rob. Res., 25(4), pp. 359–369. [CrossRef]
Chapman, E. , Macleod, M. , and Bryant, M. , 2015, “ Electrohydraulic Modeling of a Fluidic Artificial Muscle Actuation System for Robot Locomotion,” ASME Paper No. SMASIS2015-8834.
Andrikopoulos, G. , Nikolakopoulos, G. , and Manesis, S. , 2016, “ Novel Considerations on Static Force Modeling of Pneumatic Muscle Actuators,” IEEE/ASME Trans Mechatronics, 21(6), pp. 2647–2659. [CrossRef]
Carlo Ferraresi, W. F. , Walter Franco, W. , and Bertetto, A. , 2001, “ Flexible Pneumatic Actuators: A Comparison Between the Mckibben and the Straight Fibres Muscles,” J. Rob. Mechatronics, 13(1), pp. 56–63. [CrossRef]
Kothera, C. S. , Jangid, M. , Sirohi, J. , and Wereley, N. M. , 2009, “ Experimental Characterization and Static Modeling of Mckibben Actuators,” ASME J. Mech. Des., 131(9), p. 091010. [CrossRef]
Delson, N. , Hanak, T. , Loewke, K. , and Miller, D. N. , 2005, “ Modeling and Implementation of McKibben Actuators for a Hopping Robot,” 12th International Conference on Advanced Robotics (ICAR), Seattle, WA, July 18–20, pp. 833–840.
Mooney, M. , 1940, “ A Theory of Large Elastic Deformation,” J. Appl. Phys., 11(9), pp. 582–592. [CrossRef]
Rivlin, R. , 1948, “ Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory,” Philos. Trans. R. Soc. London A, 241(835), pp. 379–397. [CrossRef]
Klute, G. K. , and Hannaford, B. , 2000, “ Accounting for Elastic Energy Storage in Mckibben Artificial Muscle Actuators,” ASME J. Dyn. Syst., Meas., Control, 122(2), pp. 386–388. [CrossRef]
Woods, B. K. , Kothera, C. S. , and Wereley, N. M. , 2011, “ Wind Tunnel Testing of a Helicopter Rotor Trailing Edge Flap Actuated Via Pneumatic Artificial Muscles,” J. Intell. Mater. Syst. Struct., 22(13), pp. 1513–1528. [CrossRef]
Trivedi, D. , Lotfi, A. , and Rahn, C. D. , 2008, “ Geometrically Exact Models for Soft Robotic Manipulators,” IEEE Trans. Rob., 24(4), pp. 773–780. [CrossRef]
Kim, B. , Lee, S. B. , Lee, J. , Cho, S. , Park, H. , Yeom, S. , and Park, S. H. , “ A Comparison Among Neo-Hookean Model, Mooney-Rivlin Model and Ogden Model for Cholorprene Rubber,” Int. J. Precis. Eng. Manuf., 13(5), pp. 759–764. [CrossRef]
Wang, G. , Wereley, N. M. , and Pillsbury, T. , 2015, “ Non-Linear Quasi-Static Model of Pneumatic Artificial Muscle Actuators,” J. Intell. Mater. Syst. Struct., 26(5), pp. 541–553. [CrossRef]
Doumit, M. D. , 2009, “ Characterization, Modeling and Design of the Braided Pneumatic Muscle,” Ph.D. thesis, University of Ottawa, Ottawa, ON, Canada.
Hocking, E. G. , and Wereley, N. M. , 2012, “ Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles,” Smart Mater. Struct., 22(1), p. 014016. [CrossRef]
Liu, W. , and Rahn, C. , 2003, “ Fiber-Reinforced Membrane Models of Mckibben Actuators,” ASME J. Appl. Mech., 70(6), pp. 853–859. [CrossRef]
Kydoniefs, A. , and Salathe, E. P. , 1974, “ Finite Cylindrical Deformations of a Reinforced Elastic Tube,” Int. J. Eng. Sci., 12(6), pp. 519–535. [CrossRef]
Green, A. E. , and Adkins, J. E. , 1970, Large Elastic Deformations, Vol. 1, Clarendon Press, Oxford, UK.
Ball, E. , and Garcia, E. , 2016, “ Effects of Bladder Geometry in Pneumatic Artificial Muscles,” ASME J. Med. Devices, 10(4), p. 041001. [CrossRef]
Goulbourne, N. , 2009, “ A Mathematical Model for Cylindrical, Fiber Reinforced Electro-Pneumatic Actuators,” Int. J. Solids Struct., 46(5), pp. 1043–1052. [CrossRef]
Chen, D. , and Ushijima, K. , 2014, “ Prediction of the Mechanical Performance of Mckibben Artificial Muscle Actuator,” Int. J. Mech. Sci., 78, pp. 183–192. [CrossRef]
Zhang, W. , Accorsi, M. L. , and Leonard, J. W. , 2005, “ Analysis of Geometrically Nonlinear Anisotropic Membranes: Application to Pneumatic Muscle Actuators,” Finite Elem. Anal. Des., 41(9–10), pp. 944–962. [CrossRef]
Antonelli, M. G. , Beomonte Zobel, P. , Durante, F. , and Raparelli, T. , 2017, “ Numerical Modelling and Experimental Validation of a Mckibben Pneumatic Muscle Actuator,” J. Intell. Mater. Syst. Struct., 28(19), pp. 2737–2748. [CrossRef]
Sangian, D. , Naficy, S. , Spinks, G. M. , and Tondu, B. , 2015, “ The Effect of Geometry and Material Properties on the Performance of a Small Hydraulic Mckibben Muscle System,” Sens. Actuators A: Phys., 234, pp. 150–157. [CrossRef]
Pujana-Arrese, A. , Mendizabal, A. , Arenas, J. , Prestamero, R. , and Landaluze, J. , 2010, “ Modelling in Modelica and Position Control of a 1-Dof Set-Up Powered by Pneumatic Muscles,” Mechatronics, 20(5), pp. 535–552. [CrossRef]
Ganguly, S. , Garg, A. , Pasricha, A. , and Dwivedy, S. , 2012, “ Control of Pneumatic Artificial Muscle System Through Experimental Modelling,” Mechatronics, 22(8), pp. 1135–1147. [CrossRef]
Sui, L. , and Xie, S. , 2013, “ Modelling of Pneumatic Muscle Actuator and Antagonistic Joint Using Linearised Parameters,” Int. J. Biomechatronics Biomed. Rob., 2(2/3/4), pp. 67–74. [CrossRef]
Tondu, B. , 2012, “ Closed-Loop Position Control of Artificial Muscles With a Single Integral Action: Application to Robust Positioning of Mckibben Artificial Muscle,” IEEE International Conference on Mechatronics (ICM), Vicenza, Italy, Feb. 27–Mar. 1, pp. 718–723.
Tondu, B. , 2015, “ Single Linear Integral Action Control for Closed-Loop Positioning of a Biomimetic Actuator With Artificial Muscles,” European Control Conference (ECC), Linz, Austria, July 15–17, pp. 3585–3590.
Van Damme, M. , Beyl, P. , Vanderborght, B. , Van Ham, R. , Vanderniepen, I. , Versluys, R. , Daerden, F. , and Lefeber, D. , 2008, “ Modeling Hysteresis in Pleated Pneumatic Artificial Muscles,” IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, Sept. 21–24, pp. 471–476.
Stakvik, J. A. , Ragazzon, M. R. P. , Eielsen, A. A. , and Gravdahl, J. T. , 2015, “ On Implementation of the Preisach Model: Identification and Inversion for Hysteresis Compensation,” Model., Identif. Control, 36(3), pp. 133–142. [CrossRef]
Iwan, W. D. , 1966, “ A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response,” ASME J. Appl. Mech., 33(4), pp. 893–900. [CrossRef]
Minh, T. V. , Tjahjowidodo, T. , Ramon, H. , and Van Brussel, H. , 2009, “ Control of a Pneumatic Artificial Muscle (PAM) With Model-Based Hysteresis Compensation,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, July 14–17, pp. 1082–1087.
Vo-Minh, T. , Tjahjowidodo, T. , Ramon, H. , and Van Brussel, H. , 2011, “ A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using the Maxwell-Slip Model,” IEEE/ASME Trans. Mechatronics, 16(1), pp. 177–186. [CrossRef]
Lin, C. J. , Lin, C. R. , Yu, S. K. , and Chen, C. T. , 2015, “ Hysteresis Modeling and Tracking Control for a Dual Pneumatic Artificial Muscle System Using Prandtl–Ishlinskii Model,” Mechatronics, 28, pp. 35–45. [CrossRef]
Ismail, M. , Ikhouane, F. , and Rodellar, J. , 2009, “ The Hysteresis Bouc-Wen Model, a Survey,” Arch. Comput. Methods Eng., 16(2), pp. 161–188. [CrossRef]
Visintin, A. , 2013, “Differential Models of Hysteresis,” Vol. 3, Springer Science & Business Media, Heidelberg, Germany.
Xie, S. , Mei, J. , Liu, H. , and Wang, Y. , 2018, “ Hysteresis Modeling and Trajectory Tracking Control of the Pneumatic Muscle Actuator Using Modified Prandtl–Ishlinskii Model,” Mech. Mach. Theory, 120, pp. 213–224. [CrossRef]
Aschemann, H. , and Schindele, D. , 2014, “ Comparison of Model-Based Approaches to the Compensation of Hysteresis in the Force Characteristic of Pneumatic Muscles,” IEEE Trans. Ind. Electron., 61(7), pp. 3620–3629. [CrossRef]
Liu, Y. , Zang, X. , Lin, Z. , Liu, X. , and Zhao, J. , 2017, “ Modelling Length/Pressure Hysteresis of a Pneumatic Artificial Muscle Using a Modified Prandtl-Ishlinskii Model,” J. Mech. Eng., 63(1), pp. 56–64. [CrossRef]
Hao, L. , Yang, H. , Sun, Z. , Xiang, C. , and Xue, B. , 2017, “ Modeling and Compensation Control of Asymmetric Hysteresis in a Pneumatic Artificial Muscle,” J. Intell. Mater. Syst. Struct., 28(19), pp. 2769–2780. [CrossRef]
Jog, C. S. , 2015, Continuum Mechanics, Vol. 1, Cambridge University Press, Cambridge, UK.
Chapman, E. , Jenkins, T. , and Bryant, M. , 2016, “ Parametric Study of a Fluidic Artificial Muscle Actuated Electrohydraulic System,” ASME Paper No. SMASIS2016-9044.
Wakimoto, S. , Misumi, J. , and Suzumori, K. , 2016, “ New Concept and Fundamental Experiments of a Smart Pneumatic Artificial Muscle With a Conductive Fiber,” Sens. Actuators A: Phys., 250, pp. 48–54. [CrossRef]
Erin, O. , Pol, N. , Valle, L. , and Park, Y. L. , 2016, “ Design of a Bio-Inspired Pneumatic Artificial Muscle With Self-Contained Sensing,” IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, Aug. 16–20, pp. 2115–2119.
Al-Fahaam, H. , Davis, S. , and Nefti-Meziani, S. , 2018, “ The Design and Mathematical Modelling of Novel Extensor Bending Pneumatic Artificial Muscles (EBPAMS) for Soft Exoskeletons,” Rob. Auton. Syst., 99, pp. 63–74. [CrossRef]
Bishop-Moser, J. , and Kota, S. , 2015, “ Design and Modeling of Generalized Fiber-Reinforced Pneumatic Soft Actuators,” IEEE Trans. Rob., 31(3), pp. 536–545. [CrossRef]
Sangian, D. , Naficy, S. , and Spinks, G. M. , 2016, “ Thermally Activated Paraffin-Filled Mckibben Muscles,” J. Intell. Mater. Syst. Struct., 27(18), pp. 2508–2516. [CrossRef]
Ball, E. J. , Meller, M. A. , Chipka, J. B. , and Garcia, E. , 2016, “ Modeling and Testing of a Knitted-Sleeve Fluidic Artificial Muscle,” Smart Mater. Struct., 25(11), p. 115024. [CrossRef]
Park, Y. L. , Santos, J. , Galloway, K. G. , Goldfield, E. C. , and Wood, R. J. , 2014, “ A Soft Wearable Robotic Device for Active Knee Motions Using Flat Pneumatic Artificial Muscles,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 4805–4810.

Figures

Grahic Jump Location
Fig. 1

MPAM nomenclature: (a) initial configuration of PAM, (b) compressed configuration of PAM, and (c) relation between braid angle and PAM dimensions

Grahic Jump Location
Fig. 2

Fabricated MAPM—1.5 and 1.2 mm diameter

Grahic Jump Location
Fig. 3

Layout of pneumatic circuit and controller

Grahic Jump Location
Fig. 4

Experimental setup

Grahic Jump Location
Fig. 5

Hysteresis observed in MPAM

Grahic Jump Location
Fig. 6

End-point displacement versus applied pressure for 40 mm MPAM. θ0 = 36 deg, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, ν = 0.499, and F = 0.05 N.

Grahic Jump Location
Fig. 7

End-point displacement versus applied pressure for 60 mm MPAM. θ0 = 36 deg, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, ν = 0.499, and F = 0.05 N.

Grahic Jump Location
Fig. 8

Deformation phases of MPAM (inset—elongation part zoomed)

Grahic Jump Location
Fig. 9

(a) Resolution of axial forces into components acting on braid as well as the silicone tube and (b) force component acting on a single strand of braid

Grahic Jump Location
Fig. 10

Axial and radial force components acting on the sheath at equilibrium

Grahic Jump Location
Fig. 11

Area of contact between silicone tube and braided sleeve

Grahic Jump Location
Fig. 12

(a) Conical sections due to the sealing at the ends and (b) geometrical representation of the conical end-effect during deformation

Grahic Jump Location
Fig. 13

End-point displacement versus applied pressure for 40 mm MPAM. θ0 = 36 deg, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, ν = 0.499, and F = 0.05 N.

Grahic Jump Location
Fig. 14

End-point displacement versus applied pressure for 60 mm MPAM. θ0 = 36 deg, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, ν = 0.499, and F = 0.05 N.

Grahic Jump Location
Fig. 15

End-point displacement versus applied pressure for different angle of windings. lo = 40 mm, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, ν = 0.499, and F = 0.05 N.

Grahic Jump Location
Fig. 16

End-point displacement versus applied pressure for MPAM wound at 38 deg. angle., ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, E = 0.35 MPa, ν = 0.499, ϕ = {5,9,12} mm for l0 = {40,60,70} mm, and F = 0.05 N.

Grahic Jump Location
Fig. 17

End-point displacement versus applied pressure for MPAM with tube O.D 1.5 mm. θ0 = 35 deg, ri = 0.25 mm, rn = 0.04 mm, m = 30, E = 0.35 MPa, ν = 0.499, ϕ = {3.2,4.2,5.2} mm for l0 = {40,60,70} mm, and F = 0.05 N.

Grahic Jump Location
Fig. 18

Axial force versus displacement from fully contracted state. Pi = 758 kPa, α = 36 deg, lo = 45 mm, ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, ϕ = 5 mm, E = 0.35 MPa, and ν = 0.499.

Grahic Jump Location
Fig. 19

Evolution of final braid angle for large pressure range

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In