0
Review Article

Stably Stratified Wall-Bounded Turbulence

[+] Author and Article Information
Francesco Zonta

Institute of Fluid Mechanics and
Heat Transfer,
Vienna University of Technology,
Getreidemarkt 9,
Vienna 1060, Austria
e-mail: francesco.zonta@tuwien.ac.at

Alfredo Soldati

Institute of Fluid Mechanics and
Heat Transfer,
Vienna University of Technology,
Getreidemarkt 9,
Vienna 1060, Austria;
DPIA,
University of Udine,
Udine 33100, Italy
e-mail: alfredo.soldati@tuwien.ac.at

1Corresponding author.

Manuscript received March 16, 2018; final manuscript received July 10, 2018; published online August 9, 2018. Assoc. Editor: Jörg Schumacher.

Appl. Mech. Rev 70(4), 040801 (Aug 09, 2018) (17 pages) Paper No: AMR-18-1036; doi: 10.1115/1.4040838 History: Received March 16, 2018; Revised July 10, 2018

Stably stratified wall-bounded turbulence is commonly encountered in many industrial and environmental processes. The interaction between turbulence and stratification induces remarkable modifications on the entire flow field, which in turn influence the overall transfer rates of mass, momentum, and heat. Although a vast proportion of the parameter range of wall-bounded stably stratified turbulence is still unexplored (in particular when stratification is strong), numerical simulations and experiments have recently developed a fairly robust picture of the flow structure, also providing essential ground for addressing more complex problems of paramount technological, environmental and geophysical importance. In this paper, we review models used to describe the influence of stratification on turbulence, as well as numerical and experimental methods and flow configurations for studying the resulting dynamics. Conclusions with a view on current open issues will be also provided.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dostal, V. , Hejzlar, P. , and Driscoll, M. , 2006, “ The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles,” Nucl. Technol., 154(3), pp. 283–301. [CrossRef]
Pitla, S. S. , Robinson, D. M. , Groll, E. A. , and Ramadhyani, S. , 2006, “ Heat Transfer From Supercritical Carbon Dioxide in Tube Flow: A Critical Review,” HvacR Res., 4(3), pp. 281–301. [CrossRef]
Zonta, F. , Marchioli, C. , and Soldati, A. , 2008, “ Direct Numerical Simulation of Turbulent Heat Transfer Modulation in Micro-Dispersed Channel Flow,” Acta Mech., 195(1–4), pp. 305–326.
Galizzi, C. , and Escudié, D. , 2010, “ Experimental Analysis of an Oblique Turbulent Flame Front Propagating in a Stratified Flow,” Combust. Flame, 157(12), pp. 2277–2285. [CrossRef]
Mahrt, L. , 2014, “ Stably Stratified Atmospheric Boundary Layers,” Annu. Rev. Fluid Mech., 46(1), pp. 23–45. [CrossRef]
Williamson, N. , Armfield, S. W. , Kirkpatrick, M. P. , and Norris, S. E. , 2015, “ Transition to Stably Stratified States in Open Channel Flow With Radiative Surface Heating,” J. Fluid Mech., 766, pp. 528–555. [CrossRef]
Wunsch, C. , and Ferrari, R. , 2004, “ Vertical Mixing, Energy, and the General Circulation of the Oceans,” Annu. Rev. Fluid Mech., 36(1), pp. 281–314. [CrossRef]
Lilly, D. K. , 1983, “ Stratified Turbulence and the Mesoscale Variability of the Atmosphere,” J. Atmos. Sci., 40(3), pp. 749–761. [CrossRef]
Riley, J. J. , and Lelong, M.-P. , 2000, “ Fluid Motion in the Presence of Strong Stable Stratification,” Annu. Rev. Fluid Mech., 32(1), pp. 613–657. [CrossRef]
Lindborg, E. , 2006, “ The Energy Cascade in a Strongly Stratified Fluid,” J. Fluid Mech., 550(1), pp. 207–242. [CrossRef]
Smyth, W. D. , and Moum, J. N. , 2000, “ Length Scales of Turbulence in Stably Stratified Mixing Layers,” Phys. Fluids, 12(6), pp. 1327–1342. [CrossRef]
Smyth, W. D. , and Moum, J. N. , 2000, “ Anisotropy of Turbulence in Stably Stratified Mixing Layers,” Phys. Fluids, 12(6), pp. 1343–1362. [CrossRef]
Cortesi, A. , Yadigaroglu, G. , and Banerjee, S. , 1998, “ Numerical Investigation of the Formation of Three-Dimensional Structures in Stably-Stratified Mixing Layers,” Phys. Fluids, 10(6), pp. 1449–1473. [CrossRef]
Nieuwstadt, F. T. M. , 2005, “ Direct Numerical Simulation of Stable Channel Flow at Large Stability,” Boundary Layer Meteorol., 116(2), pp. 277–299. [CrossRef]
Fernando, H. J. S. , 1991, “ Turbulent Mixing in Stratified Fluids,” Annu. Rev. Fluid Mech., 23(1), pp. 455–493. [CrossRef]
Rohr, J. J. , Itsweire, E. C. , Helland, K. N. , and van Atta, C. W. , 1988, “ Growth and Decay of Turbulence in a Stratified Shear Flows,” J. Fluid Mech., 195(1), pp. 77–111. [CrossRef]
Holt, S. E. , Koseff, J. R. , and Ferziger, J. H. , 1992, “ A Numerical Study of the Evolution and Structure of Homogeneous Stably Stratified Sheared Turbulence,” J. Fluid Mech., 237(1), pp. 499–539. [CrossRef]
Armenio, V. , and Sarkar, S. , 2002, “ An Investigation of Stably Stratified Turbulent Channel Flow Using Large-Eddy Simulation,” J. Fluid Mech., 459, pp. 1–42. [CrossRef]
Mahrt, L. , 1999, “ Stratified Atmospheric Boundary Layers,” Boundary Layer Meteorol., 90(3), pp. 375–396. [CrossRef]
Staquet, C. , and Sommeria, J. , 2002, “ Internal Gravity Waves: From Instabilities to Turbulence,” Annu. Rev. Fluid Mech., 34(1), pp. 559–593. [CrossRef]
Monin, A. S. , and Obukhov, A. M. , 1954, “ Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere,” Contrib. Geophys. Inst. Acad. Sci. USSR, 24, pp. 163–187.
Obukhov, A. M. , 1971, “ Turbulence in the Atmosphere With a Non-Uniform Temperature,” Boundary Layer Meteorol., 2(1), pp. 7–29. [CrossRef]
Ferziger, J. H. , Koseff, J. R. , and Monismith, S. G. , 2002, “ Numerical Simulation of Geophysical Turbulence,” Comput. Fluids, 31(4–7), pp. 557–568. [CrossRef]
Ozmidov, R. V. , 1965, “ On the Turbulent Exchange in a Stably Stratified Ocean,” Atmos. Oceanic Phys., 1, pp. 853–860.
Bolgiano, R. , 1959, “ Turbulent Spectra in a Stable Stratified Atmosphere,” J. Geophys. Res., 64(12), pp. 2226–2229. [CrossRef]
Dougherty, J. P. , 1961, “ The Anisotropy of Turbulence at the Meteor Level,” J. Atmos. Terr. Phys., 21(2–3), pp. 210–213. [CrossRef]
Thorpe, S. A. , 1973, “ Experiments on Instability and Turbulence in a Stratified Shear Flow,” J. Fluid Mech., 61(04), pp. 731–751. [CrossRef]
Thorpe, S. A. , 1977, “ Turbulence and Mixing in a Scottish Loch,” Philos. Trans. R. Soc. London, 286(1334), pp. 125–181. [CrossRef]
Dillon, T. M. , 1982, “ Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales,” J. Geophys. Res., 87(C12), pp. 9601–9613. [CrossRef]
Itsweire, E. C. , Koseff, J. R. , Briggs, D. A. , and Ferziger, J. H. , 1993, “ Turbulence in Stratified Shear Flows: Implications for Interpreting Shear Induced Mixing in the Ocean,” J. Phys. Oceanogr., 23(7), p. 1508. [CrossRef]
Cimatoribus, A. A. , van Haren, H. , and Gostiaux, L. , 2014, “ Comparison of Ellison and Thorpe Scales From Eulerian Ocean Temperature Observations,” J. Geophys. Res. Oceans, 119(10), pp. 7047–7065. [CrossRef]
Monin, A. , 1970, “ The Atmospheric Boundary Layer,” Annu. Rev. Fluid Mech., 2(1), pp. 225–250. [CrossRef]
Pope, S. B. , 2000, Turbulent Flows, Cambridge University Press, Cambridge, UK.
Ellison, T. H. , 1957, “ Turbulent Transport of Heat and Momentum From an Infinite Rough Plane,” J. Fluid Mech., 2(5), pp. 246–466. [CrossRef]
Taylor, J. R. , Sarkar, S. , and Armenio, V. , 2005, “ Large Eddy Simulation of Stably Stratified Open Channel Flow,” Phys. Fluids, 17(11), p. 116602. [CrossRef]
Zonta, F. , Onorato, M. , and Soldati, A. , 2012, “ Turbulence and Internal Waves in Stably-Stratified Channel Flow With Temperature-Dependent Fluid Properties,” J. Fluid Mech., 697, pp. 175–203. [CrossRef]
Oberbeck, A. , 1879, “ Über Die Wärmeleitung Der Flüssigkeiten Bei Berücksichtigung Der Strömungen Infolge Von Temperaturdifferenzen,” Ann. Phys. Chem., 243(6), pp. 271–292. [CrossRef]
Boussinesq, J. , 1903, Theorie Analytique De La Chaleur, Gauthier-Villars, Paris, France.
Batchelor, G. K. , 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, UK.
Bae, J. H. , Yoo, J. Y. , and Choi, H. , 2005, “ Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer,” Phys. Fluids, 17(10), p. 105104. [CrossRef]
Sameen, A. , Verzicco, R. , and Sreenivasan, K. R. , 2009, “ Specific Role of Fluid Properties in Non-Boussinesq Thermal Convection at the Rayleigh Number of 2 × 108,” Europhys. Lett., 86(1), p. 14006. [CrossRef]
Nemati, H. , Patel, A. , Boersma, B. J. , and Pecnik, R. , 2015, “ Mean Statistics of a Heated Turbulent Pipe Flow at Supercritical Pressure,” Int. J. Heat Mass Transfer, 83, pp. 741–752. [CrossRef]
Zonta, F. , Marchioli, C. , and Soldati, A. , 2012, “ Modulation of Turbulence in Forced Convection by Temperature-Dependent Viscosity,” J. Fluid Mech., 697, pp. 150–174. [CrossRef]
Garg, R. P. , Ferziger, J. H. , Monismith, S. G. , and Koseff, J. R. , 2000, “ Stably Stratified Turbulent Channel Flows—I: Stratification Regimes and Turbulence Suppression Mechanism,” Phys. Fluids, 12(10), p. 2569. [CrossRef]
García-Villalba, M. , and Álamo, J. C. D. , 2011, “ Turbulence Modification by Stable Stratification in Channel Flow,” Phys. Fluids, 23(4), p. 045104. [CrossRef]
Bejan, A. , 1984, Convective Heat Transfer, Wiley, New York.
Gebhart, B. , Jaluria, Y. , Mahajan, R. L. , and Sammakia, B. , 1988, Buoyancy-Induced Flows and Transport, Hemisphere Pub. Corp., Washington, DC.
Turner, J. S. , 1973, Buoyancy Effects in Fluids, Cambridge University Press, Cambridge, UK.
Spiegel, E. A. , and Veronis, G. , 1960, “ On the Boussinesq Approximation for a Compressible Fluid,” Astrophys. J., 131, pp. 442–447. [CrossRef]
Mihaljan, J. M. , 1962, “ A Rigorous Exposition of the Boussinesq Approximations Applicable to a Thin Layer of Fluid,” Astrophys. J., 136, pp. 1126–1133. [CrossRef]
Gray, D. D. , and Giorgini, A. , 1976, “ The Validity of the Boussinesq Approximation for Liquids and Gases,” Int. J. Heat Mass Transfer, 19(5), pp. 545–551. [CrossRef]
Niemela, J. J. , 2004, “ High Rayleigh Number Thermal Convection,” J. Low Temp. Phys., 134(1/2), pp. 447–456. [CrossRef]
Niemela, J. J. , and Sreenivasan, K. , 2006, “ The Use of Cryogenic Helium for Classical Turbulence: Promises and Hurdles,” J. Low Temp. Phys., 143(5–6), pp. 163–212. [CrossRef]
Kundu, P. K. , Cohen, I. M. , and Dowling, D. R. , 2011, Fluid Mechanics, 5th ed., Academic Press, Waltham, MA.
Tritton, D. J. , 1988, Physical Fluid Dynamics, Oxford University Press, Oxford, UK.
Pons, M. , and Quéré, P. L. , 2007, “ Modeling Natural Convection With the Work of Pressure-Forces: A Thermodynamic Necessity,” Int. J. Numer. Methods Fluids, 13(3), pp. 322–332. [CrossRef]
Ogura, Y. , and Phillips, N. , 1962, “ Scale Analysis of Deep and Shallow Convection in the Atmosphere,” J. Atmos. Sci., 19(2), pp. 173–179. [CrossRef]
Bannon, P. R. , 1996, “ On the Anelastic Approximation for a Compressible Atmosphere,” J. Atmos. Sci., 53(23), pp. 3618–3628. [CrossRef]
Lilly, D. K. , 1996, “ A Comparison of Incompressible, Anelastic and Boussinesq Dynamics,” Atmos. Res., 40(2–4), pp. 143–151. [CrossRef]
Sugiyama, K. , Calzavarini, E. , Grossmann, S. , and Lohse, D. , 2009, “ Flow Organization in Two-Dimensional Non-Oberbeck–Boussinesq Rayleigh-Benard Convection in Water,” J. Fluid Mech., 637, pp. 105–135. [CrossRef]
Zonta, F. , and Soldati, A. , 2014, “ Effect of Temperature-Dependent Fluid Properties on Heat Transfer in Turbulent Mixed Convection,” ASME J. Heat Transfer, 136(2), p. 022501. [CrossRef]
Pickard, G. L. , and Emery, W. J. , 1990, Descriptive Physical Oceanography: An Introduction, Pergamon Press, Oxford, UK.
Agostini, B. , Fabbri, M. , Park, J. E. , Wojtan, L. , Thome, J. R. , and Michel, B. , 2007, “ State of the Art of High Heat Flux Cooling Technologies,” Heat Transfer Eng., 28(4), pp. 258–281. [CrossRef]
Moin, P. , and Mahesh, K. , 1998, “ Direct Numerical Simulation: A Tool in Turbulence Research,” Annu. Rev. Fluid Mech., 30(1), pp. 539–578. [CrossRef]
Lesieur, M. , and Métais, O. , 1996, “ New Trends in Large-Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28(1), pp. 45–82. [CrossRef]
Durbin, P. A. , 2018, “ Some Recent Developments in Turbulence Closure Modeling,” Annu. Rev. Fluid Mech., 50(1), pp. 77–103. [CrossRef]
Miles, J. W. , 1961, “ On the Stability of Heterogeneous Shear Flows,” J. Fluid Mech., 10(04), pp. 496–508. [CrossRef]
Gage, K. S. , and Reid, W. H. , 1968, “ The Stability of Thermally Stratified Plane Poiseuille Flow,” J. Fluid Mech., 33(01), pp. 21–32. [CrossRef]
Deusebio, E. , Caulfield, C. P. , and Taylor, J. R. , 2015, “ The Intermittency Boundary in Stratified Plane Couette Flow,” J. Fluid Mech., 781, pp. 298–329. [CrossRef]
Brethouwer, G. , Duguet, Y. , and Schlatter, P. , 2012, “ Turbulent-Laminar Coexistence in Wall Flows With Coriolis, Buoyancy or Lorentz Forces,” J. Fluid Mech., 704, pp. 137–172. [CrossRef]
He, P. , 2016, “ A High Order Finite Difference Solver for Massively Parallel Simulations of Stably Stratified Turbulent Channel Flows,” Comput. Fluids, 127, pp. 161–173. [CrossRef]
de Wiel, B. J. H. V. , Moene, A. F. , Jonker, H. J. J. , and Holtslag, A. A. M. , 2012, “ The Cessation of Continuous Turbulence as Precursor of the Very Stable Nocturnal Boundary Layer,” J. Atmos. Sci., 69(11), pp. 3097–3115. [CrossRef]
Donda, J. M. M. , van Hooijdonk, I. G. S. , Moene, A. F. , Jonker, H. J. J. , van Heijst, G. J. F. , Clercx, H. J. H. , and van de Wiel, B. J. H. , 2015, “ Collapse of Turbulence in Stably Stratified Channel Flow: A Transient Phenomenon,” Quart. J. Roy. Meteor. Soc., 141 (691), pp. 2137–2147. [CrossRef]
Monin, A. S. , and Yaglom, A. M. , 1975, Statistical Fluid Mechanics: Mechanism of Turbulence, Vol. 2, MIT Press, Cambridge, MA.
Iida, O. , Kasagi, N. , and Nagano, Y. , 2002, “ Direct Numerical Simulation of Turbulent Channel Flow Under Stable Density Stratification,” Int. J. Heat Mass Transfer, 45(8), pp. 1693–1703. [CrossRef]
Yeo, K. , Kim, B. G. , and Lee, C. , 2009, “ Eulerian and Lagrangian Statistics in Stably Stratified Turbulent Channel Flows,” J. Turbul., 10, pp. 1–26. [CrossRef]
Flores, O. , and Riley, J. J. , 2011, “ Analysis of Turbulence Collapse in the Stably Stratified Surface Layer Using Direct Numerical Simulation,” Boundary Layer Meteorol., 139(2), pp. 241–159. [CrossRef]
Deusebio, E. , Schlatter, P. , Brethouwer, G. , and Lindborg, E. , 2011, “ Direct Numerical Simulations of Stratified Open Channel Flows,” J. Phys. Conf. Ser., 318, pp. 241–259. http://iopscience.iop.org/article/10.1088/1742-6596/318/2/022009
Lovecchio, S. , Zonta, F. , and Soldati, A. , 2014, “ Influence of Thermal Stratification on the Surfacing and Clustering of Floaters in Free Surface Turbulence,” Adv. Water Resour., 72, pp. 22–31. [CrossRef]
Coleman, G. N. , Ferziger, J. H. , and Spalart, P. R. , 1992, “ Direct Numerical Simulation of the Stably Stratified Turbulent Ekman Layer,” J. Fluid Mech., 244(1), pp. 677–712. [CrossRef]
Lovecchio, S. , Zonta, F. , and Soldati, A. , 2015, “ Upscale Energy Transfer and Flow Topology in Free Surface Turbulence,” Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys., 91(3), p. 033010.
Basak, S. , and Sarkar, S. , 2006, “ Dynamics of a Stratified Shear Layer With Horizontal Shear,” J. Fluid Mech., 568, pp. 19–54. [CrossRef]
Jacobitz, F. G. , Sarkar, S. , and van Atta, C. W. , 1997, “ Direct Numerical Simulations of the Turbulence Evolution in a Uniformly Sheared and Stratified Flow,” J. Fluid Mech., 342, pp. 231–261. [CrossRef]
Brost, R. A. , and Wyngaard, J. C. , 1978, “ A Model Study of the Stably-Stratified Planetary Boundary Layer,” J. Atmos. Sci., 35(8), pp. 1427–1440. [CrossRef]
Hunt, J. C. R. , 1985, “ Diffusion in the Stably Stratified Atmospheric Boundary Layer,” J. Clim. Appl. Meteorol., 24(11), pp. 1187–1195. [CrossRef]
Nieuwstadt, F. T. M. , 1984, “ The Turbulent Structure of the Stable, Nocturnal Boundary Layer,” J. Atmos. Sci., 41(14), pp. 2202–2216. [CrossRef]
Caughey, S. J. , Wyngaard, J. C. , and Kaimal, J. C. , 1979, “ Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci., 6, pp. 1041–1052.
Mason, P. J. , and Derbyshire, S. H. , 1990, “ Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer,” Boundary Layer Meteorol., 53(1–2), pp. 117–162. [CrossRef]
Derbyshire, S. H. , 1995, “ Stable Boundary Layers: Observations, Models and Variability—Part I: Modelling and Measurements,” Boundary Layer Meteorol., 74(1–2), pp. 19–54. [CrossRef]
Saiki, E. S. , Moeng, C. H. , and Sullivan, P. P. , 2000, “ Large-Eddy Simulation of the Stably Stratified Planetary Boundary Layer,” Boundary Layer Meteorol., 95(1), pp. 1–30. [CrossRef]
Kosovic, B. , and Curry, J. A. , 2000, “ A Large Eddy Simulation Study of a Quasi-Steady Stably Stratified Atmospheric Boundary Layer,” J. Atmos. Sci., 57(8), pp. 1052–1068. [CrossRef]
Beare, R. J. , MacVean, M. K. , Holtslag, A. A. M. , Cuxart, J. , Esau, I. , Golaz, J.-C. , Jimenez, M. A. , Khairoutdinov, M. , Kosovic, B. , Lewellen, D. , Lund, T. S. , Lundquist, J. K. , McCabe, A. , Moene, A. F. , Noh, Y. , Raasch, S. , and Sullivan, P. , 2006, “ An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer,” Boundary Layer Meteorol., 118(2), pp. 247–272. [CrossRef]
Kleissl, J. , Vijayant, K. , and Parlange, C. M. M. B. , 2006, “ Numerical Study of Dynamic Smagorinsky Models in Large-Eddy Simulation of the Atmospheric Boundary Layer: Validation in Stable and Unstable Conditions,” Water Resour. Res., 42(6), p. W06D10. [CrossRef]
Germano, M. , Piomelli, U. M. M. P. , and Cabot, W. H. , 1991, “ A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A, 3, pp. 1760–1765. [CrossRef]
Porté-Agel, F. , 2004, “ A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer,” Boundary Layer Meteorol., 112(1), pp. 81–105. [CrossRef]
Stoll, R. , and Porté-Agel, F. , 2008, “ Large-Eddy Simulation of the Stable Atmospheric Boundary Layer Using Dynamic Models With Different Averaging Schemes,” Boundary Layer Meteorol., 126(1), pp. 1–28. [CrossRef]
Wang, L. , and Lu, X. Y. , 2005, “ Large Eddy Simulation of Stably Stratified Turbulent Open Channel Flows With Low-to High-Prandtl Number,” Intl. J. Heat Mass Transfer, 48(10), pp. 1883–1897. [CrossRef]
Jiménez, M. A. , and Cuxart, J. , 2005, “ Large-Eddy Simulations of the Stable Boundary Layer Using the Standard Kolmogorov Theory: Range of Applicability,” Boundary Layer Meteorol., 115(2), pp. 241–261. [CrossRef]
Cuxart, J. , Yagüe, C. , Morales, G. , Terradellas, E. , Orbe, J. , Calvo, J. , Fernandez, A. , Infante, C. , Buenestado, P. , Espinalt, A. , Jorgensen, H. , Rees, J. , Vila, J. , Redondo, J. , Cantalapiedra, L. , and Conangla, L. , 2000, “ Stable Atmospheric Boundary-Layer Experiment in Spain (Sables 98): A Report,” Boundary Layer Meteorol., 96(3), pp. 19–54. [CrossRef]
Poulos, G. S. , Blumen, W. , Fritts, D. C. , Lundquist, J. K. , Sun, J. , Burns, S. P. , Nappo, C. , Cuxart, R. B. R. N. J. , Terradellas, E. , Balsley, B. , and Jensen, M. , 2002, “ Cases-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer,” Bull. Am. Meteorol. Soc., 83(4), pp. 555–581. [CrossRef]
Jones, W. P. , and Launder, B. R. , 1972, “ The Prediction of Laminarization With a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer, 15(2), pp. 301–314. [CrossRef]
Munk, W. H. , and Anderson, E. R. , 1948, “ Notes on the Theory of the Thermocline,” J. Mar. Res., 3, pp. 276–295.
Schumann, U. , and Gerz, T. , 1995, “ Turbulent Mixing in Stably Stratified Shear Flows,” J. Appl. Meteorol., 34(1), pp. 33–48. [CrossRef]
Venayagamoorthy, S. K. , and Stretch, D. D. , 2010, “ On the Turbulent Prandtl Number in Homogeneous Stably Stratified Turbulence,” J. Fluid Mech., 644, pp. 359–369. [CrossRef]
Garratt, J. R. , 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, UK.
Derbyshire, S. H. , 1999, “ Stable Boundary-Layer Modelling: Established Approaches and Beyond,” Boundary Layer Meteorol., 90(3), pp. 423–446. [CrossRef]
Huang, J. , Bou-Zeid, E. , and Golaz, J.-C. , 2013, “ Turbulence and Vertical Fluxes in the Stable Atmospheric Boundary Layer—Part II: A Novel Mixing-Length Model,” J. Atmos. Sci., 70(6), pp. 1528–1542. [CrossRef]
Fernando, H. J. S. , and Weil, J. C. , 2010, “ Whither the Stable Boundary Layer?,” Bull. Am. Meteorol. Soc., 91(11), pp. 1475–1484. [CrossRef]
Mahrt, L. , and Vickers, D. , 2005, “ Boundary-Layer Adjustment Over Small-Scale Changes of Surface Heat Flux,” Boundary Layer Meteorol., 116(2), pp. 313–330. [CrossRef]
Galperin, B. , Sukoriansky, S. , and Anderson, P. S. , 2007, “ On the Critical Richardson Number in Stably Stratified Turbulence,” Atmos. Sci. Lett., 8(3), pp. 65–69. [CrossRef]
Zilitinkevich, S. , Elperin, T. , Kleeorin, N. , Rogachevskii, I. , Esau, I. , Mauritsen, T. , and Miles, M. , 2008, “ Turbulence Energetics in Stably Stratified Geophysical Flows: Strong and Weak Mixing Regimes,” Quart. J. R. Meteorol. Soc., 134(633), pp. 793–799. [CrossRef]
Karimpour, F. , and Venayagamoorthy, S. K. , 2014, “ A Simple Turbulence Model for Stably Stratified Wall-Bounded Flows,” J. Geophys. Res., 119(2), pp. 870–880. [CrossRef]
Mellor, G. L. , and Yamada, T. , 1974, “ A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers,” J. Atmos. Sci., 31(7), pp. 1791–1806. [CrossRef]
Canuto, V. M. , Cheng, Y. , Howard, A. , and Isau, I. , 2008, “ Stably Stratified Flows: A Model With No Ri(Cr),” J. Atmos. Sci., 65(7), pp. 2437–2447. [CrossRef]
Lazeroms, W. M. J. , Brethouwer, G. , Wallin, S. , and Johansson, A. V. , 2013, “ An Explicit Algebraic Reynolds-Stress and Scalar-Flux Model for Stably Stratified Flows,” J. Fluid Mech., 723, pp. 91–125. [CrossRef]
Zonta, F. , 2013, “ Nusselt Number and Friction Factor in Thermally Stratified Turbulent Channel Flow Under Non-Oberbeck–Boussinesq Conditions,” Intl. J. Heat Fluid Flow, 44, pp. 489–494. [CrossRef]
Piccirillo, P. , and van Atta, C. W. , 1997, “ The Evolution of a Uniformly Sheared Thermally Stratified Turbulent Flow,” J. Fluid Mech., 334, pp. 61–86. [CrossRef]
Arya, S. P. S. , 1975, “ Buoyancy Effects in an Horizontal Flat-Plane Boundary Layer,” J. Fluid Mech., 68(02), pp. 321–343. [CrossRef]
Komori, S. , Ueda, H. , Ogino, F. , and Mizushina, T. , 1983, “ Turbulence Structure in Stably Stratified Open-Channel Flow,” J. Fluid Mech., 130(1), pp. 13–26. [CrossRef]
Webster, C. A. G. , 1964, “ An Experimental Study of Turbulence in a Density Stratified Shear Flow,” J. Fluid Mech., 19(02), pp. 221–245. [CrossRef]
Piat, J.-F. , and Hopfinger, E. J. , 1981, “ A Boundary Layer Topped by a Density Interface,” J. Fluid Mech., 113(1), pp. 411–432. [CrossRef]
Ohya, Y. , Neff, D. , and Meroney, R. , 1997, “ Turbulence Structure in a Stratified Boundary Layer Under Stable Conditions,” Boundary Layer Meteorol., 83(1), pp. 139–161. [CrossRef]
Ohya, Y. , and Uchida, T. , 2003, “ Turbulence Structure of Stable Boundary Layers With a Near-Linear Temperature Profile,” Boundary Layer Meteorol., 108(1), pp. 19–38. [CrossRef]
Ohya, Y. , 2001, “ Wind Tunnel Study of Atmospheric Stable Boundary Layers Over a Rough Surface,” Boundary Layer Meteorol., 98(1), pp. 57–82. [CrossRef]
Ivey, G. N. , Winters, K. B. , and Koseff, J. R. , 2008, “ Density Stratification, Turbulence, But How Much Mixing?,” Annu. Rev. Fluid Mech., 40(1), pp. 169–184. [CrossRef]
Cimatoribus, A. A. , and van Haren, H. , 2015, “ Temperature Statistics Above a Deep-Ocean Sloping Boundary,” J. Fluid Mech., 775, pp. 415–435. [CrossRef]
Riley, J. J. , and Lindborg, E. , 2008, “ Stratified Turbulence: A Possible Interpretation of Some Geophysical Turbulence Measurements,” J. Atmos. Sci., 65(7), pp. 2416–2424. [CrossRef]
Itsweire, E. , 1984, “ Measurements of Vertical Overturns in a Stably Stratified Turbulent Flow,” Phys. Fluids, 27(4), pp. 764–766. [CrossRef]
Ledwell, J. R. , Watson, A. J. , and Law, C. S. , 1998, “ Mixing of a Tracer in the Pycnocline,” J. Geophys. Res., 103(C10), pp. 21499–21529. [CrossRef]
Ledwell, J. R. , Montgomery, E. T. , Polzin, K. L. , Laurent, L. C. S. , Schmitt, R. W. , and Toole, J. M. , 2000, “ Evidence for Enhanced Mixing Over Rough Topography in the Abyssal Ocean,” Nature, 403(6766), pp. 79–182. [CrossRef]
Lueck, R. G. , Wolk, F. , and Yamazaki, H. , 2002, “ Oceanic Velocity Microstructure Measurements in the 20th Century,” J. Oceanogr., 58(1), pp. 153–174. [CrossRef]
Álamo, J. C. D. , and Jiménez, J. , 2003, “ Spectra of the Very Large Anisotropic Scales in Turbulent Channels,” Phys. Fluids, 15(6), p. L41. [CrossRef]
Hoyas, S. , and Jiménez, J. , 2006, “ Scaling of the Velocity Fluctuations in Turbulent Channels Up to Reτ = 2003,” Phys. Fluids, 18(1), p. 011702. [CrossRef]
Lighthill, M. J. , 1978, Waves in Fluids, Cambridge University Press, Cambridge, UK.
Pomar, L. , Morsilli, M. , Hallock, P. , and Bádenas, B. , 2012, “ Internal Waves, an Under-Explored Source of Turbulence Events in the Sedimentary Record,” Earth Sci. Rev., 11(1–2), pp. 56–81. [CrossRef]
Lamb, K. G. , 2014, “ Internal Wave Breaking and Dissipation Mechanisms on the Continental Slope/Shelf,” Annu. Rev. Fluid Mech., 46(1), pp. 231–254. [CrossRef]
Peltier, W. R. , and Caulfield, C. P. , 2003, “ Mixing Efficiency in Stratified Shear Flows,” Annu. Rev. Fluid Mech., 35(1), pp. 135–167. [CrossRef]
Sun, J. , 1999, “ Diurnal Variations of Thermal Roughness Height Over a Grassland,” Boundary Layer Meteorol., 92(3), pp. 407–427. [CrossRef]
Mahrt, L. , 1998, “ Stratified Atmospheric Boundary Layers and Breakdown of Models,” J. Theor. Comput. Fluid Dyn., 11(3–4), pp. 263–279. [CrossRef]
Hogstrom, U. , 1996, “ Review of Some Basic Characteristics of the Atmospheric Surface Layer,” Bound. Layer Meteorol., 78, pp. 215–246. [CrossRef]
de Wiel, B. J. H. V. , Moene, A. F. , Hartogensis, O. K. , Bruin, H. A. R. D. , and Holtslag, A. A. M. , 2003, “ Intermittent Turbulence in the Stable Boundary Layer Over Land—Part II: A Classification for Observations During Cases-99,” J. Atmos. Sci., 60(20), pp. 2509–2522. [CrossRef]
Fukui, K. , Nakajima, M. , and Ueda, H. , 1983, “ A Laboratory Experiment on Momentum and Heat Transfer in the Stratified Surface Layer,” Quart. J. R. Met. Soc., 109 (461), pp. 661–676. [CrossRef]
Lessani, B. , and Zainali, A. , 2009, “ Numerical Investigation of Stably Stratified Turbulent Channel Flow Under Non-Boussinesq Conditions,” J. Turbul., 10, pp. 1–25. [CrossRef]
Bae, J. H. , Yoo, J. Y. , and McEligot, D. M. , 2008, “ Direct Numerical Simulation of Heated co2 Flows at Supercritical Pressure in a Vertical Annulus at Re = 8900,” Phys. Fluids, 20(5), p. 055108. [CrossRef]
Hamilton, J. , Kim, J. , and Waleffe, F. , 1995, “ Regeneration Mechanisms of Near-Wall Turbulence Structures,” J. Fluid Mech., 287(1), pp. 317–348. [CrossRef]
Waleffe, F. , 1997, “ On a Self-Sustaining Process in Shear Flows,” Phys. Fluids, 9 (4), pp. 883–900. [CrossRef]
Peeters, J. W. R. , Pecnik, R. , Rohde, M. , van der Hagen, T. H. J. J. , and Boersma, B. J. , 2016, “ Turbulence Attenuation in Simultaneously Heated and Cooled Annular Flows at Supercritical Pressure,” J. Fluid Mech., 799, pp. 505–540. [CrossRef]
Patel, A. , Boersma, B. , and Pecnik, R. , 2016, “ The Influence of Near-Wall Density and Viscosity Gradients on Turbulence in Channel Flows,” J. Fluid Mech., 809, pp. 793–820. [CrossRef]
Paparella, F. , and Hardenberg, J. V. , 2012, “ Clustering of Salt Fingers in Double-Diffusive Convection Leads to Staircaselike Stratification,” Phys. Rev. Lett., 109(1), p. 014502. [CrossRef] [PubMed]
Yang, Y. , Verzicco, R. , and Lohse, D. , 2016, “ Scaling Laws and Flow Structures of Double Diffusive Convection in the Finger Regime,” J. Fluid Mech., 802, pp. 667–689. [CrossRef]
Taylor, J. R. , and Sarkar, S. , 2008, “ Direct and Large Eddy Simulations of a Bottom Ekman Layer Under an External Stratification,” Int. J. Heat Fluid Flow, 29(3), pp. 721–732. [CrossRef]
Deusebio, E. , Brethouwer, G. , Schlatter, P. , and Lindborg, E. , 2014, “ A Numerical Study of the Unstratified and Stratified Ekman Layer,” J. Fluid Mech., 755, pp. 672–704. [CrossRef]
Ansorge, C. , and Mellado, J. P. , 2014, “ Global Intermittency and Collapsing Turbulence in the Stratified Planetary Boundary Layer,” Boundary Layer Meteorol., 153(1), pp. 89–116. [CrossRef]

Figures

Grahic Jump Location
Fig. 2

Panel (a) vector plots on a yz cross section of a stratified channel (only half of the channel, from the boundary up to the channel center, is shown); (b) Wall-normal behavior of the Ozmidov scale (Lo/h), Kolmogorov scale (9η/h), and distance from the boundary (Lz/h, taken here as representative for the largest turbulence scales). Results from Ref. [36].

Grahic Jump Location
Fig. 1

The structure of a weakly/moderately stratified wall-bounded turbulent flow. Close to the boundary, classical boundary layer turbulence is sustained. Farther from the wall, a buoyancy dominated region characterized by the presence of IGWs is observed. Contour maps of the temperature field are used for visualization purposes. Trajectories of Lagrangian tracers randomly released in the flow and colored by the magnitude of their turbulent kinetic energy are also shown. The flow direction is explicitly indicated.

Grahic Jump Location
Fig. 3

A parameter space (ΔT, h) of wall-bounded stratified turbulence with the different numerical approach that can be used for its description. Panel (a): air; panel (b): water. In this schematic, the solid lines indicate approximately the point at which the basic Oberbeck–Boussinesq model begins to fail, and more complex non-Oberbeck–Boussinesq models (both incompressible NOB or low-Mach) must be used. The dashed line indicates the point at which the thermodynamic Boussinesq model should be used. Specific indication of the parameter (ε) that describes each threshold line is also explicitly given. The label inside each region indicates the corresponding numerical approach according to the following color-code: Oberbeck–Boussinesq, low-Mach number, incompressible NOB, and thermodynamic Boussinesq. Some examples of the most suitable approaches to be used for flows of interest in environmental and industrial applications are provided in the following. In the nocturnal boundary layer, for example, h ≃ 102/103m and ΔT ≃ 5 °C. In this case, the thermodynamic Boussinesq model would be appropriate. However, if h > 103m, a low-Mach number approach would be recommended. In the deep ocean, h ≃ 103m and ΔT ≃ 2 °C, whereas in the upper ocean, h ≃ 102m and ΔT ≃ 10  °C [62]. In both cases, an incompressible NOB approach is required. In industrial heat transfer processes, typical sizes are h ≃ 1 m, whereas ΔT are usually larger than in environmental applications. For air, temperature gradients can easily be ΔT = 10/100 °C, while for water ΔT can achieve few tens, in particular for high heat flux cooling technologies [63]. In these latter cases, a low Mach number approach (air) and an incompressible NOB approach (water) is recommended.

Grahic Jump Location
Fig. 4

Structure of the (Reτ − Riτ) space diagram for wall bounded stratified flows. Circles represent the critical Riτ (neutral curve) obtained from the linear stability analysis [68] and recast to fit with the present parameter space. The fitting of the neutral curve proposed here has the following form: log(Riτ,cr)=m·[log(Reτ)]b+n·[log(Reτ)−d]a+c, where the value of the parameters is a = −0.1843, b = 1.047, c = 1.914, d = 1.927, m = 1.651, and n = −2.204. The shaded area in the parameter space corresponds to strongly stratified turbulent flow conditions (appearance of laminar patches in the near wall region). The strongly stratified laminar and the weakly stratified turbulent regions are also explicitly indicated. Symbols below the neutral curve represent a collection of numerical simulations of wall-bounded stratified turbulence [6,36,45,6971]. Note that, in the context of stably stratified turbulence, the term subcritical (resp. supercritical) condition refers to a flow characterized by a lower-than-critical (resp. larger-than-critical) value of the shear Richardsons number Riτ, i.e., falling below (resp. above) the neutral curve.

Grahic Jump Location
Fig. 6

Contour map of the streamwise velocity fluctuations on a xy plane in the near wall region (z+ ≃ 15) for Reτ = 550. Panel (a): unstratified flow; Panel (b): stratified case at Riτ = 480. (Reproduced with permission from García-Villalba and Álamo [45]. Copyright 2011 by AIP Publising.)

Grahic Jump Location
Fig. 5

Time measurements of the temperature as a function of the distance from the bottom boundary (h.a.b) during an experimental campaign focused on the bottom oceanic boundary layer. (Reproduced with permission from Cimatoribus and van Haren [125]. Copyright 2015 by Cambridge University.)

Grahic Jump Location
Fig. 7

Contour map of density (panel a) and wall normal velocity fluctuations on a horizontal plane at the center of the channel for Reτ = 550 and Riτ = 480. The black solid line indicates the trace ∂ρ/∂x = 0 obtained after smoothing the temperature field by 2D cutoff filter. (Reproduced with permission from García-Villalba and Álamo [45]. Copyright 2011 by AIP Publishing.)

Grahic Jump Location
Fig. 8

Behavior of the phase angle ϕ() between the vertical velocity w and the temperature fluctuations θ as a function of the normalized wavenumber in the streamwise direction kxδ. Measurements are taken at different locations from the wall (y+) for moderately stratified conditions. (Reproduced with permission from Iida et al. [75]. Copyright 2002 by Elsevier.)

Grahic Jump Location
Fig. 9

Contour map of the streamwise velocity ux on a horizontal parallel plane located at 10 wall units from the wall. Panels are as follows: panel (a) Reτ = 80 and Riτ = 0; panel (b) Reτ = 113 and Riτ = 38; panel (c) Reτ = 192 and Riτ = 273; panel (d) Reτ = 334 and Riτ = 985. (Reproduced with permission from Brethouwer et al. [70]. Copyright 2012 by Cambridge University.)

Grahic Jump Location
Fig. 10

Panel (a) behavior of the friction factor Cf as a function of the shear Richardson number Riτ. Panel (b) behavior of the Nusselt number, Nu, as a function of the shear Richardson number Riτ. Data are gathered both from numerical [6,35,44,45,116] (filled symbols) and experimental studies [119,142] (open symbols).

Grahic Jump Location
Fig. 11

Distribution of density ρ, viscosity μ and Prandtl number Pr of supercritical CO2 (sCO2) in a cross section of an annular pipe heated from the inner wall and cooled from the outer wall. Panel (a) refers to the forced convection case (no buoyancy); panel (b) refers to the mixed convection case (buoyancy is accounted). (Reproduced with permission from Peeters et al. [70]. Copyright 2016 by Cambridge University.)

Grahic Jump Location
Fig. 12

Summary points at a glance

Grahic Jump Location
Fig. 13

Future challenges and perspectives at a glance

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In