0
Review Article

Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development

[+] Author and Article Information
Ala Tabiei

Professor
Department of Mechanical Engineering,
University of Cincinnati,
Cincinnati, OH 45220
e-mail: tabieia@ucmail.uc.edu

Wenlong Zhang

Department of Civil Engineering,
University of Cincinnati,
Cincinnati, OH 45220

Manuscript received August 2, 2017; final manuscript received May 29, 2018; published online June 19, 2018. Assoc. Editor: Samantha H. Daly.

Appl. Mech. Rev 70(3), 030801 (Jun 19, 2018) (23 pages) Paper No: AMR-17-1053; doi: 10.1115/1.4040448 History: Received August 02, 2017; Revised May 29, 2018

Composite laminate has extensive usage in the aerospace and automotive industries. Thus delamination, one of its most prevalent and challenging failure modes, has attracted substantial research efforts, and lead to the rapid development of both simulation and experiment method. Although reviews exist about simulation and experiment methods, there are not many that cover the development in the last five years. This paper is targeted to fill that gap. We covered a broad range of topic in delamination, from the basic delamination onset and propagation theories to complex loading scenarios, like impact and fatigue loading. From a simulation point of view, virtual crack closure technique (VCCT) and cohesive zone model (CZM), the two most famous methods of delamination modeling, are compared and elaborated. Their implementation techniques are described, and their merits and drawbacks are discussed. We also covered the failure mode of combined delamination and matrix cracking, which is prevalent in impact loading scenarios. Simulation techniques, along with the failure mechanisms, are presented. From experiment point of view, the discussed topics range from delamination fracture toughness (DFT) tests under static, dynamic, or cyclic loading conditions, to impact tests that aim to obtain the impact resistance and residual strength after impact. Moreover, a collection of recent experiment data is provided.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Naebe, M. , Abolhasani, M. M. , Khayyam, H. , Amini, A. , and Fox, B. , 2016, “ Crack Damage in Polymers and Composites: A Review,” Polym. Rev., 56(1), pp. 31–69. [CrossRef]
Zhang, H. , Bilotti, E. , and Peijs, T. , 2015, “ The Use of Carbon Nanotubes for Damage Sensing and Structural Health Monitoring in Laminated Composites: A Review,” Nanocomposites, 1(4), pp. 167–184. https://www.tandfonline.com/doi/abs/10.1080/20550324.2015.1113639
Liu, D. , Tang, Y. , and Cong, W. , 2012, “ A Review of Mechanical Drilling for Composite Laminates,” Compos. Struct., 94(4), pp. 1265–1279. [CrossRef]
González, E. , Maimí, P. , Camanho, P. , Turon, A. , and Mayugo, J. , 2012, “ Simulation of Drop-Weight Impact and Compression After Impact Tests on Composite Laminates,” Compos. Struct., 94(11), pp. 3364–3378. [CrossRef]
Carraro, P. A. , Novello, E. , Quaresimin, M. , and Zappalorto, M. , 2017, “ Delamination Onset in Symmetric Cross-Ply Laminates Under Static Loads: Theory, Numerics and Experiments,” Compos. Struct., 176, pp. 420–432. [CrossRef]
Orifici, A. , Herszberg, I. , and Thomson, R. , 2008, “ Review of Methodologies for Composite Material Modelling Incorporating Failure,” Compos. Struct., 86(1–3), pp. 194–210. [CrossRef]
Liu, P. F. , Hou, S. J. , Chu, J. K. , Hu, X. Y. , Zhou, C. L. , Liu, Y. L. , Zheng, J. Y. , Zhao, A. , and Yan, L. , 2011, “ Finite Element Analysis of Postbuckling and Delamination of Composite Laminates Using Virtual Crack Closure Technique,” Compos. Struct., 93(6), pp. 1549–1560. [CrossRef]
Turon, A. , Camanho, P. , Costa, J. , and Renart, J. , 2010, “ Accurate Simulation of Delamination Growth Under Mixed-Mode Loading Using Cohesive Elements: Definition of Interlaminar Strengths and Elastic Stiffness,” Compos. Struct., 92(8), pp. 1857–1864. [CrossRef]
Feng, D. , and Aymerich, F. , 2014, “ Finite Element Modelling of Damage Induced by Low-Velocity Impact on Composite Laminates,” Compos. Struct., 108, pp. 161–171. [CrossRef]
Bak, B. L. , Turon, A. , Lindgaard, E. , and Lund, E. , 2016, “ A Simulation Method for High‐Cycle Fatigue‐Driven Delamination Using a Cohesive Zone Model,” Int. J. Numer. Methods Eng., 106(3), pp. 163–191. [CrossRef]
Chen, B. , Tay, T. , Pinho, S. , and Tan, V. , 2017, “ Modelling Delamination Migration in Angle-Ply Laminates,” Compos. Sci Technol., 142, pp. 145–155. [CrossRef]
Turon, A. , Davila, C. G. , Camanho, P. P. , and Costa, J. , 2007, “ An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models,” Eng. Fract. Mech., 74(10), pp. 1665–1682. [CrossRef]
Chen, B. , Pinho, S. , De Carvalho, N. , Baiz, P. , and Tay, T. , 2014, “ A Floating Node Method for the Modelling of Discontinuities in Composites,” Eng. Fract. Mech., 127, pp. 104–134. [CrossRef]
Simon, J. , Höwer, D. , Stier, B. , Reese, S. , and Fish, J. A. , 2017, “ Regularized Orthotropic Continuum Damage Model for Layered Composites: Intralaminar Damage Progression and Delamination,” Comput. Mech., 60(3), pp. 445–463. [CrossRef]
Harper, P. W. , and Hallett, S. R. , 2010, “ A Fatigue Degradation Law for Cohesive Interface Elements–Development and Application to Composite Materials,” Int. J. Fatigue, 32(11), pp. 1774–1787. [CrossRef]
Richardson, M. , and Wisheart, M. , 1996, “ Review of Low-Velocity Impact Properties of Composite Materials,” Compos. Part A: Appl. Sci. Manuf., 27(12), pp. 1123–1131. [CrossRef]
Elder, D. J. , Thomson, R. S. , Nguyen, M. Q. , and Scott, M. L. , 2004, “ Review of Delamination Predictive Methods for Low Speed Impact of Composite Laminates,” Compos. Struct., 66(1–4), pp. 677–683. [CrossRef]
Tay, T. , 2003, “ Characterization and Analysis of Delamination Fracture in Composites: An Overview of Developments From 1990 to 2001,” ASME Appl. Mech. Rev., 56(1), pp. 1–32. [CrossRef]
Reeder, J. R. , 2006, “ 3D Mixed-Mode Delamination Fracture Criteria–an Experimentalist's Perspective,” 21st Annual Technical Conference, Dearborn, MI, Sept. 17–20, pp. 1–18. https://ntrs.nasa.gov/search.jsp?R=20060048260
Shi, Y. , Pinna, C. , and Soutis, C. , 2014, “ Modelling Impact Damage in Composite Laminates: A Simulation of Intra-and Inter-Laminar Cracking,” Compos. Struct., 114, pp. 10–19. [CrossRef]
Chen, J. , Morozov, E. V. , and Shankar, K. , 2014, “ Simulating Progressive Failure of Composite Laminates Including In-Ply and Delamination Damage Effects,” Compos. Part A: Appl. Sci. Manuf., 61, pp. 185–200. [CrossRef]
Främby, J. , Fagerström, M. , and Brouzoulis, J. , 2016, “ Adaptive Modelling of Delamination Initiation and Propagation Using an Equivalent Single‐Layer Shell Approach,” Int. J. Numer. Methods Eng., 112(8), pp. 882–908. [CrossRef]
Tong, L. , 1997, “ An Assessment of Failure Criteria to Predict the Strength of Adhesively Bonded Composite Double Lap Joints,” J. Reinf. Plast. Compos., 16(8), pp. 698–713. [CrossRef]
Diaz, A. D. , and Caron, J. , 2006, “ Interface Plasticity and Delamination Onset Prediction,” Mech. Mater., 38(7), pp. 648–663. [CrossRef]
Brewer, J. C. , and Lagace, P. A. , 1988, “ Quadratic Stress Criterion for Initiation of Delamination,” J. Compos. Mater., 22(12), pp. 1141–1155. [CrossRef]
Ye, L. , 1988, “ Role of Matrix Resin in Delamination Onset and Growth in Composite Laminates,” Compos. Sci. Technol., 33, pp. 257–277. [CrossRef]
Camanho, P. P. , and Dávila, C. G. , 2002, “ Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials,” National Aeronautics and Space Administration Langley Research Center, Hampton, VA, Report No. NASA/TM-2002-211737. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020053651.pdf
Camanho, P. P. , Davila, C. , and De Moura, M. , 2003, “ Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials,” J. Compos. Mater., 37(16), pp. 1415–1438. [CrossRef]
Camanho, P. , and Matthews, F. , 1999, “ Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates,” J. Compos. Mater., 33(10), pp. 906–927. [CrossRef]
Luo, R. , Green, E. , and Morrison, C. , 1999, “ Impact Damage Analysis of Composite Plates,” Int. J. Impact Eng., 22(4), pp. 435–447. [CrossRef]
Fish, J. C. , and Lee, S. W. , 1989, “ Delamination of Tapered Composite Structures,” Eng. Fract. Mech., 34(1), pp. 43–54. [CrossRef]
Zhang, J. , and Zhang, X. , 2015, “ Simulating Low-Velocity Impact Induced Delamination in Composites by a Quasi-Static Load Model With Surface-Based Cohesive Contact,” Compos. Struct., 125, pp. 51–57. [CrossRef]
Christensen, R. M. , and DeTeresa, S. J. , 2004, “ Delamination Failure Investigation for out-of-Plane Loading in Laminates,” J. Compos. Mater., 38(24), pp. 2231–2238. [CrossRef]
Daniel, I. M. , Luo, J. , Schubel, P. M. , and Werner, B. T. , 2009, “ Interfiber/Interlaminar Failure of Composites Under Multi-Axial States of Stress,” Compos. Sci. Technol., 69(6), pp. 764–771. [CrossRef]
Daniel, I. , Werner, B. , and Fenner, J. , 2011, “ Strain-Rate-Dependent Failure Criteria for Composites,” Compos. Sci. Technol., 71(3), pp. 357–364. [CrossRef]
ASTM, 2013, “ Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA, Standard No. ASTM D5528-13. https://infostore.saiglobal.com/en-au/standards/astm-d5528-13-1694007/
ASTM, 2014, “ Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA, Standard No. ASTM D7905/D7905M-14. https://www.astm.org/Standards/D7905.htm
Reeder, J. , 1992, “ An Evaluation of Mixed-Mode Delamination Failure Criteria,” National Aeronautics and Space Administration, Langley Research Center, Hampton,VA, Report No. NASA TM 104210. https://ntrs.nasa.gov/search.jsp?R=19920009705
Camanho, P. P. , Davila, C. , and Pinho, S. , 2004, “ Fracture Analysis of Composite Co‐Cured Structural Joints Using Decohesion Elements,” Fatigue Fract. Eng. Mater. Struct., 27(9), pp. 745–757. [CrossRef]
Whitcomb, J. D. , 1984, “ Analysis of Instability-Related Growth of a Through-Width Delamination,” National Aeronautics and Space Administration, Langley Research Center, Hampton,VA, Report No. NASA TM-86301. https://ntrs.nasa.gov/search.jsp?R=19840025453
De Morais, A. , Pereira, A. , De Moura, M. , Silva, F. , and Dourado, N. , 2015, “ Bilinear Approximations to the Mixed-Mode I–II Delamination Cohesive Law Using an Inverse Method,” Compos. Struct., 122, pp. 361–366. [CrossRef]
Reeder, J. R. , 1993, “ A Bilinear Failure Criterion for Mixed-Mode Delamination,” ASTM International, West Conshohocken, PA, Standard No. STP1206. https://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP12636S.htm
Donaldson, S. , 1985, “ Fracture Toughness Testing of Graphite/Epoxy and Graphite/PEEK Composites,” Composites, 16(2), pp. 103–112. [CrossRef]
Benzeggagh, M. , and Kenane, M. , 1996, “ Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus,” Compos. Sci. Technol., 56(4), pp. 439–449. [CrossRef]
Liu, Y. , Zhang, C. , and Xiang, Y. , 2015, “ A Critical Plane-Based Fracture Criterion for Mixed-Mode Delamination in Composite Materials,” Compos. Part B: Eng., 82, pp. 212–220. [CrossRef]
Brunner, A. , Blackman, B. , and Davies, P. , 2008, “ A Status Report on Delamination Resistance Testing of Polymer–Matrix Composites,” Eng. Fract. Mech., 75(9), pp. 2779–2794. [CrossRef]
ASTM, 2013, “ Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA, Report No. ASTM D5528-13. https://www.astm.org/Standards/D5528
Mathews, M. J. , and Swanson, S. R. , 2007, “ Characterization of the Interlaminar Fracture Toughness of a Laminated Carbon/Epoxy Composite,” Compos. Sci. Technol., 67(7–8), pp. 1489–1498. [CrossRef]
Zhao, L. , Gong, Y. , Zhang, J. , Chen, Y. , and Fei, B. , 2014, “ Simulation of Delamination Growth in Multidirectional Laminates Under Mode I and Mixed Mode I/II Loadings Using Cohesive Elements,” Compos. Struct., 116, pp. 509–522. [CrossRef]
Solaimurugan, S. , and Velmurugan, R. , 2008, “ Influence of in-Plane Fibre Orientation on Mode I Interlaminar Fracture Toughness of Stitched Glass/Polyester Composites,” Compos. Sci. Technol., 68(7–8), pp. 1742–52. [CrossRef]
Andersons, J. , Hojo, M. , and Ochiai, S. , 2004, “ Empirical Model for Stress Ratio Effect on Fatigue Delamination Growth Rate in Composite Laminates,” Int. J. Fatigue, 26(6), pp. 597–604. [CrossRef]
Shiino, M. Y. , Alderliesten, R. C. , Donadon, M. V. , Voorwald, H. J. C. , and Cioffi, M. O. H. , 2015, “ Applicability of Standard Delamination Tests (Double Cantilever Beam and End Notch Flexure) for 5HS Fabric-Reinforced Composites in Weft-Dominated Surface,” J. Compos. Mater., 49(21), pp. 2557–2565. [CrossRef]
Nikbakht, M. , Yousefi, J. , Hosseini-Toudeshky, H. , and Minak, G. , 2017, “ Delamination Evaluation of Composite Laminates With Different Interface Fiber Orientations Using Acoustic Emission Features and Micro Visualization,” Compos. Part B: Eng., 113, pp. 185–196. [CrossRef]
Alfred Franklin, V. , and Christopher, T. , 2013, “ Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study,” Adv. Mater. Sci. Eng., 2013, p. 412601.
Pereira, A. , and De Morais, A. , 2004, “ Mode I Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates,” Compos. Sci. Technol., 64(13–14), pp. 2261–2270. [CrossRef]
De Morais, A. , and Pereira, A. , 2007, “ Application of the Effective Crack Method to Mode I and Mode II Interlaminar Fracture of Carbon/Epoxy Unidirectional Laminates,” Compos. Part A: Appl. Sci. Manuf., 38(3), pp. 785–794. [CrossRef]
Arai, M. , Noro, Y. , Sugimoto, K. , and Endo, M. , 2008, “ Mode I and Mode II Interlaminar Fracture Toughness of CFRP Laminates Toughened by Carbon Nanofiber Interlayer,” Compos. Sci. Technol., 68(2), pp. 516–525. [CrossRef]
Velmurugan, R. , and Solaimurugan, S. , 2007, “ Improvements in Mode I Interlaminar Fracture Toughness and in-Plane Mechanical Properties of Stitched Glass/Polyester Composites,” Compos. Sci. Technol., 67(1), pp. 61–69. [CrossRef]
Shokrieh, M. , Zeinedini, A. , and Ghoreishi, S. , 2017, “ On the Mixed Mode I/II Delamination R-Curve of E-Glass/Epoxy Laminated Composites,” Compos. Struct., 171, pp. 19–31. [CrossRef]
Murri, G. B. , 2014, “ Effect of Data Reduction and Fiber-Bridging on Mode I Delamination Characterization of Unidirectional Composites,” J. Compos. Mater., 48(19), pp. 2413–2424. [CrossRef]
Gogotsi, G. A. , 2003, “ Fracture Toughness of Ceramics and Ceramic Composites,” Ceram. Int., 29(7), pp. 777–784. [CrossRef]
Göktaş, D. , Kennon, W. , and Potluri, P. , 2017, “ Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites,” Appl. Compos. Mater., 24(2), pp. 351–375. [CrossRef]
Pinto, M. A. , Chalivendra, V. B. , Kim, Y. K. , and Lewis, A. F. , 2013, “ Effect of Surface Treatment and Z-Axis Reinforcement on the Interlaminar Fracture of Jute/Epoxy Laminated Composites,” Eng. Fract. Mech., 114, pp. 104–114. [CrossRef]
Ravandi, M. , Teo, W. , Tran, L. , Yong, M. , and Tay, T. , 2016, “ The Effects of Through-the-Thickness Stitching on the Mode I Interlaminar Fracture Toughness of Flax/Epoxy Composite Laminates,” Mater. Des., 109, pp. 659–669. [CrossRef]
Wang, J. , and Qiao, P. , 2004, “ Novel Beam Analysis of End Notched Flexure Specimen for Mode-II Fracture,” Eng. Fract. Mech., 71(2), pp. 219–231. [CrossRef]
Blackman, B. , Brunner, A. , and Williams, J. , 2006, “ Mode II Fracture Testing of Composites: A New Look at an Old Problem,” Eng. Fract. Mech., 73(16), pp. 2443–2455. [CrossRef]
Schuecker, C. , and Davidson, B. D. , 2000, “ Evaluation of the Accuracy of the Four-Point Bend End-Notched Flexure Test for Mode II Delamination Toughness Determination,” Compos. Sci. Technol., 60(11), pp. 2137–2146. [CrossRef]
Davidson, B. D. , and Sun, X. , 2005, “ Effects of Friction, Geometry, and Fixture Compliance on the Perceived Toughness From Three-and Four-Point Bend End-Notched Flexure Tests,” J. Reinf. Plast. Compos., 24(15), pp. 1611–1628. [CrossRef]
Machado, J. , Marques, E. , Campilho, R. , and da Silva, L. F. , 2017, “ Mode II Fracture Toughness of CFRP as a Function of Temperature and Strain Rate,” Compos. Part B: Eng., 114, pp. 311–318. [CrossRef]
De Moura, M. , and De Morais, A. , 2008, “ Equivalent Crack Based Analyses of ENF and ELS Tests,” Eng. Fract. Mech., 75(9), pp. 2584–2596. [CrossRef]
Zabala, H. , Aretxabaleta, L. , Castillo, G. , and Aurrekoetxea, J. , 2016, “ Dynamic 4 ENF Test for a Strain Rate Dependent Mode II Interlaminar Fracture Toughness Characterization of Unidirectional Carbon Fibre Epoxy Composites,” Polym. Test., 55, pp. 212–218. [CrossRef]
Davidson, B. D. , 2015, “ Standardization of the End-Notched Flexure Test for Mode II Interlaminar Fracture Toughness Determination of Unidirectional Laminated Composites,” J. Test. Eval., 43(6), pp. 1540–1553. [CrossRef]
Tanaka, K. , Kageyama, K. , and Hojo, M. , 1995, “ Prestandardization Study on Mode II Interlaminar Fracture Toughness Test for CFRP in Japan,” Composites, 26(4), pp. 257–267. [CrossRef]
Wang, W. , Nakata, M. , Takao, Y. , and Matsubara, T. , 2009, “ Experimental Investigation on Test Methods for Mode II Interlaminar Fracture Testing of Carbon Fiber Reinforced Composites,” Compos. Part A: Appl. Sci. Manuf., 40(9), pp. 1447–1455. [CrossRef]
Pereira, A. , De Morais, A. , Marques, A. , and De Castro, P. , 2004, “ Mode II Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates,” Compos. Sci. Technol., 64(10–11), pp. 1653–1659. [CrossRef]
Pereira, A. , and De Morais, A. , 2004, “ Mode II Interlaminar Fracture of Glass/Epoxy Multidirectional Laminates,” Compos. Part A: Appl. Sci. Manuf., 35(2), pp. 265–272. [CrossRef]
Samborski, S. , 2017, “ Analysis of the End-Notched Flexure Test Configuration Applicability for Mechanically Coupled Fiber Reinforced Composite Laminates,” Compos. Struct., 163, pp. 342–349. [CrossRef]
Davies, P. , Casari, P. , and Carlsson, L. , 2005, “ Influence of Fibre Volume Fraction on Mode II Interlaminar Fracture Toughness of Glass/Epoxy Using the 4ENF Specimen,” Compos. Sci. Technol., 65(2), pp. 295–300. [CrossRef]
Marannano, G. , Parrinello, F. , and Pasta, A. , 2015, “ Numerical and Experimental Analysis of the Frictional Effects on 4ENF Delamination Tests Performed on Unidirectional CFRP,” Procedia Eng., 109, pp. 372–380. [CrossRef]
Crews , J. H., Jr. , and Reeder, J. R. , 1988, “ A Mixed-Mode Bending Apparatus for Delamination Testing,” National Aeronautics and Space Administration Langley Research Center, Hampton, VA, Report No. NSAS/TM-100662. https://ntrs.nasa.gov/search.jsp?R=19890001574
ASTM, 2013, “ Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA, Standard No. ASTM D6671/D6671M-13e1. https://www.astm.org/Standards/D6671.htm
Bennati, S. , Colleluori, M. , Corigliano, D. , and Valvo, P. S. , 2009, “ An Enhanced Beam-Theory Model of the Asymmetric Double Cantilever Beam (ADCB) Test for Composite Laminates,” Compos. Sci. Technol., 69(11–12), pp. 1735–1745. [CrossRef]
Mollón, V. , Bonhomme, J. , Viña, J. , and Argüelles, A. , 2010, “ Theoretical and Experimental Analysis of Carbon Epoxy Asymmetric Dcb Specimens to Characterize Mixed Mode Fracture Toughness,” Polym. Test, 29(6), pp. 766–770. [CrossRef]
Bennati, S. , Fisicaro, P. , and Valvo, P. S. , 2013, “ An Enhanced Beam-Theory Model of the Mixed-Mode Bending (MMB) Test—Part II: Applications and Results,” Meccanica, 48(2), pp. 465–484. [CrossRef]
Banks-Sills, L. , 2015, “ Interface Fracture Mechanics: Theory and Experiment,” Int. J. Fract., 191(1–2), pp. 131–146. [CrossRef]
Rubiera, S. , Argüelles, A. , Viña, J. , Rocandio, C. , and Bonhomme, J. , 2016, “ Fracture Behavior Under Mixed Mode I/II Static and Dynamic Loading of ADCB Specimens,” J. Reinf. Plast. Compos., 35(20), pp. 1513–1523. [CrossRef]
Banks‐Sills, L. , 2014, “ 50th Anniversary Article: Review on Interface Fracture and Delamination of Composites,” Strain, 50(2), pp. 98–110. [CrossRef]
Banks-Sills, L. , Freed, Y. , Eliasi, R. , and Fourman, V. , 2006, “ Fracture Toughness of the 45°/–45° Interface of a Laminate Composite,” Int. J. Fract., 141(1–2), pp. 195–210. [CrossRef]
Mollón, V. , Viña, J. , Argüelles, A. , Bonhomme, J. , and Viña, I. , 2011, “ Influence of the Mode Mixity Ratio and Test Procedures on the Total Energy Release Rate in Carbon-Epoxy Laminates,” Procedia Eng., 10, pp. 953–958. [CrossRef]
Chaves, F. J. , Da Silva, L. , De Moura, M. , Dillard, D. , and Esteves, V. , 2014, “ Fracture Mechanics Tests in Adhesively Bonded Joints: A Literature Review,” J. Adhes., 90(12), pp. 955–992. [CrossRef]
Da Silva, L. , Esteves, V. , and Chaves, F. , 2011, “ Fracture Toughness of a Structural Adhesive Under Mixed Mode Loadings,” Materialwiss. Werkstofftech., 42(5), pp. 460–470. [CrossRef]
Kim, B. W. , and Mayer, A. H. , 2003, “ Influence of Fiber Direction and Mixed-Mode Ratio on Delamination Fracture Toughness of Carbon/Epoxy Laminates,” Compos. Sci. Technol., 63(5), pp. 695–713. [CrossRef]
Choupani, N. , 2008, “ Experimental and Numerical Investigation of the Mixed-Mode Delamination in Arcan Laminated Specimens,” Mater. Sci. Eng.: A, 478(1–2), pp. 229–242. [CrossRef]
Dharmawan, F. , Simpson, G. , Herszberg, I. , and John, S. , 2006, “ Mixed Mode Fracture Toughness of GFRP Composites,” Compos. Struct., 75(1–4), pp. 328–338. [CrossRef]
Marat-Mendes, R. M. , and Freitas, M. M. , 2010, “ Failure Criteria for Mixed Mode Delamination in Glass Fibre Epoxy Composites,” Compos. Struct., 92(9), pp. 2292–2298. [CrossRef]
Rybicki, E. F. , and Kanninen, M. , 1977, “ A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral,” Eng. Fract. Mech., 9(4), pp. 931–938. [CrossRef]
Watwood, V. , 1970, “ The Finite Element Method for Prediction of Crack Behavior,” Nucl. Eng. Des., 11(2), pp. 323–332. [CrossRef]
Krueger, R. , 2004, “ Virtual Crack Closure Technique: History, Approach, and Applications,” ASME Appl. Mech. Rev., 57(2), pp. 109–143. [CrossRef]
Oneida, E. , van der Meulen, M. , and Ingraffea, A. , 2015, “ Method for Calculating G, GI, and GII to Simulate Crack Growth in 2D, Multiple-Material Structures,” Eng. Fract. Mech., 140, pp. 106–126. [CrossRef]
Farkash, E. , and Banks-Sills, L. , 2017, “ Virtual Crack Closure Technique for an Interface Crack Between Two Transversely Isotropic Materials,” Int. J. Fract., 205(2), pp. 189–202. [CrossRef]
Sun, C. , and Manoharan, M. , 1989, “ Strain Energy Release Rates of an Interfacial Crack Between Two Orthotropic Solids,” J. Compos. Mater., 23(5), pp. 460–478. [CrossRef]
Shahverdi, M. , Vassilopoulos, A. P. , and Keller, T. , 2015, “ 12 - Simulating the Effect of Fiber Bridging and Asymmetry on the Fracture Behavior of Adhesively-Bonded Composite Joints,” Fatigue and Fracture of Adhesively-Bonded Composite Joints, A. P. Vassilopoulos , ed., Woodhead Publishing, Cambridge, UK, pp. 345–367.
Banks-Sills, L. , and Farkash, E. , 2016, “ A Note on the Virtual Crack Closure Technique for a Bimaterial Interface Crack,” Int. J. Fract., 201(2), pp. 171–180. [CrossRef]
De Carvalho, N. , Chen, B. , Pinho, S. , Ratcliffe, J. , Baiz, P. , and Tay, T. , 2015, “ Modeling Delamination Migration in Cross-Ply Tape Laminates,” Compos. Part A: Appl. Sci. Manuf., 71, pp. 192–203. [CrossRef]
Cox, B. , and Yang, Q. , 2006, “ In Quest of Virtual Tests for Structural Composites,” Science, 314(5802), pp. 1102–1107. [CrossRef] [PubMed]
Liu, P. , Gu, Z. , Peng, X. , and Zheng, J. , 2015, “ Finite Element Analysis of the Influence of Cohesive Law Parameters on the Multiple Delamination Behaviors of Composites Under Compression,” Compos. Struct., 131, pp. 975–986. [CrossRef]
Marjanović, M. , Meschke, G. , and Vuksanović, D. , 2016, “ A Finite Element Model for Propagating Delamination in Laminated Composite Plates Based on the Virtual Crack Closure Method,” Compos. Struct., 150, pp. 8–19. [CrossRef]
McElroy, M. , 2017, “ Use of an Enriched Shell Finite Element to Simulate Delamination-Migration in a Composite Laminate,” Compos. Struct., 167, pp. 88–95. [CrossRef]
Pietropaoli, E. , and Riccio, A. , 2011, “ Formulation and Assessment of an Enhanced Finite Element Procedure for the Analysis of Delamination Growth Phenomena in Composite Structures,” Compos. Sci. Technol., 71(6), pp. 836–846. [CrossRef]
Riccio, A. , Raimondo, A. , and Scaramuzzino, F. , 2013, “ A Study on Skin Delaminations Growth in Stiffened Composite Panels by a Novel Numerical Approach,” Appl. Compos. Mater., 20(4), pp. 465–488. [CrossRef]
Riccio, A. , Raimondo, A. , and Scaramuzzino, F. , 2015, “ A Robust Numerical Approach for the Simulation of Skin–Stringer Debonding Growth in Stiffened Composite Panels Under Compression,” Compos. Part B: Eng., 71, pp. 131–142. [CrossRef]
Orifici, A. C. , and Krueger, R. , 2010, “ Assessment of Static Delamination Propagation Capabilities in Commercial Finite Element Codes Using Benchmark Analysis,” National Aeronautics and Space Administration, Hampton, VA, Report No. NASA/CR-2010-216709. https://ntrs.nasa.gov/search.jsp?R=20100023298
Davies, G. , and Guiamatsia, I. , 2012, “ The Problem of the Cohesive Zone in Numerically Simulating Delamination/Debonding Failure Modes,” Appl. Compos. Mater., 19(5), pp. 831–838. [CrossRef]
Krueger, R. , 2008, “ An Approach to Assess Delamination Propagation Simulation Capabilities in Commercial Finite Element Codes,” National Aeronautics and Space Administration, Hampton, VA, Report No. NASA TM/2008-215123. https://ntrs.nasa.gov/search.jsp?R=20080015439
Gasco, F. , and Feraboli, P. , 2014, “ A Crack Length Control Scheme for Solving Nonlinear Finite Element Equations in Stable and Unstable Delamination Propagation Analysis,” Compos. Struct., 117, pp. 267–273. [CrossRef]
Skvortsov, Y. V. , Chernyakin, S. , Glushkov, S. , and Perov, S. , 2015, “ Finite Element Modeling of Delamination Propagation in Composite Laminates,” Appl. Mech. Mater., 756, pp. 347–352.
Ahn, J. S. , and Woo, K. S. , 2015, “ Delamination of Laminated Composite Plates by p-Convergent Partial Discrete-Layer Elements With VCCT,” Mech. Res. Commun., 66, pp. 60–69. [CrossRef]
Bisagni, C. , Brambilla, P. , and Bavila, C. G. , 2013, “ Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads,” SAMPE 2013, Long Beach, CA, May 6–9.
Barbero, E. , and Reddy, J. , 1991, “ Modeling of Delamination in Composite Laminates Using a Layer-Wise Plate Theory,” Int. J. Solids Struct., 28(3), pp. 373–388. [CrossRef]
Reddy, J. , 1993, “ An Evaluation of Equivalent-Single-Layer and Layerwise Theories of Composite Laminates,” Compos. Struct., 25(1–4), pp. 21–35. [CrossRef]
Turon, A. , Costa, J. , Camanho, P. , and Dávila, C. , 2007, “ Simulation of Delamination in Composites Under High-Cycle Fatigue,” Compos. Part A: Appl. Sci. Manuf., 38(11), pp. 2270–2282. [CrossRef]
Pietropaoli, E. , and Riccio, A. , 2010, “ On the Robustness of Finite Element Procedures Based on Virtual Crack Closure Technique and Fail Release Approach for Delamination Growth Phenomena. Definition and Assessment of a Novel Methodology,” Compos. Sci. Technol., 70(8), pp. 1288–1300. [CrossRef]
Samborski, S. , 2016, “ Numerical Analysis of the DCB Test Configuration Applicability to Mechanically Coupled Fiber Reinforced Laminated Composite Beams,” Compos. Struct., 152, pp. 477–487. [CrossRef]
DeCarvalho, N. V. , Chen, B. , Pinho, S. T. , Baiz, P. , Ratcliffe, J. G. , and Tay, T. , 2013, “ Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration,” 19th International Conference on Composite Materials (ICCM19), Montreal, QC, Canada, July 28–Aug. 2. https://ntrs.nasa.gov/search.jsp?R=20140000837
Li, D. , Liu, Y. , and Zhang, X. , 2015, “ An Extended Layerwise Method for Composite Laminated Beams With Multiple Delaminations and Matrix Cracks,” Int. J. Numer. Methods Eng., 101(6), pp. 407–434. [CrossRef]
Li, D. , 2016, “ Delamination and Transverse Crack Growth Prediction for Laminated Composite Plates and Shells,” Comput. Struct., 177, pp. 39–55. [CrossRef]
Chen, B. , Tay, T. , Pinho, S. , and Tan, V. , 2016, “ Modelling the Tensile Failure of Composites With the Floating Node Method,” Comput. Methods Appl. Mech. Eng., 308, pp. 414–442. [CrossRef]
Krueger, R. , and Carvalho, N. , In 2016, “ Search of a Time Efficient Approach to Crack and Delamination Growth Predictions in Composites,” 31st American Society for Composites Technical Conference, Williamsburg, VA, Sept. 19–22, p.17. https://ntrs.nasa.gov/search.jsp?R=20160012031
Song, J. , Areias, P. , and Belytschko, T. , 2006, “ A Method for Dynamic Crack and Shear Band Propagation With Phantom Nodes,” Int. J. Numer. Methods Eng., 67(6), pp. 868–893. [CrossRef]
McElroy, M. , 2015, “ An Enriched Shell Element for Delamination Simulation in Composite Laminates,” National Aeronautics and Space Administration, Hampton, VA, Report No. NF1676 L-20621. https://ntrs.nasa.gov/search.jsp?R=20160006284
Dugdale, D. , 1960, “ Yielding of Steel Sheets Containing Slits,” J. Mech. Phys. Solids, 8(2), pp. 100–104. [CrossRef]
Barenblatt, G. I. , 1962, “ The Mathematical Theory of Equilibrium Cracks in Brittle Fracture,” Adv. Appl. Mech., 7, pp. 55–129. [CrossRef]
Sosa, J. C. , and Karapurath, N. , 2012, “ Delamination Modelling of GLARE Using the Extended Finite Element Method,” Compos. Sci. Technol., 72(7), pp. 788–791. [CrossRef]
Camacho, G. T. , and Ortiz, M. , 1996, “ Computational Modelling of Impact Damage in Brittle Materials,” Int. J. Solids Struct., 33(20–22), pp. 2899–2938. [CrossRef]
Ortiz, M. , and Pandolfi, A. , 1999, “ Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis,” Int. J. Numer. Methods Eng., 44(9), pp. 1267–1282. [CrossRef]
Zhang, Z. , and Chen, Y. , 2015, “ A Constrained Intrinsic Cohesive Finite Element Method With Little Stiffness Reduction for Fracture Simulation,” Eng. Fract. Mech., 136, pp. 213–225. [CrossRef]
Blal, N. , Daridon, L. , Monerie, Y. , and Pagano, S. , 2011, “ Criteria on the Artificial Compliance Inherent to the Intrinsic Cohesive Zone,” C. R. Méc., 339, pp. 789–795.
Blal, N. , Daridon, L. , Monerie, Y. , and Pagano, S. , 2012, “ Artificial Compliance Inherent to the Intrinsic Cohesive Zone Models: Criteria and Application to Planar Meshes,” Int. J. Fract., 178(1–2), pp. 71–83. [CrossRef]
Wu, L. , Becker, G. , and Noels, L. , 2014, “ Elastic Damage to Crack Transition in a Coupled Non-Local Implicit Discontinuous Galerkin/Extrinsic Cohesive Law Framework,” Comput. Methods Appl. Mech. Eng., 279, pp. 379–409. [CrossRef]
Becker, G. , and Noels, L. , 2013, “ A Full‐Discontinuous Galerkin Formulation of Nonlinear Kirchhoff–Love Shells: Elasto‐Plastic Finite Deformations, Parallel Computation, and Fracture Applications,” Int. J. Numer. Methods Eng., 93(1), pp. 80–117. [CrossRef]
Dooley, I. , Mangala, S. , Kale, L. , and Geubelle, P. , 2009, “ Parallel Simulations of Dynamic Fracture Using Extrinsic Cohesive Elements,” J. Sci. Comput., 39(1), pp. 144–165. [CrossRef]
Abrate, S. , Ferrero, J. , and Navarro, P. , 2015, “ Cohesive Zone Models and Impact Damage Predictions for Composite Structures,” Meccanica, 50(10), pp. 2587–2620. [CrossRef]
Xu, X. , and Needleman, A. , 1994, “ Numerical Simulations of Fast Crack Growth in Brittle Solids,” J. Mech. Phys. Solids, 42(9), pp. 1397–1434. [CrossRef]
Van den Bosch, M. , Schreurs, P. , and Geers, M. , 2006, “ An Improved Description of the Exponential Xu and Needleman Cohesive Zone Law for Mixed-Mode Decohesion,” Eng. Fract. Mech., 73(9), pp. 1220–1234. [CrossRef]
Zhang, W. , and Tabiei, A. , “ Improvement of an Exponential Cohesive Zone Model for Fatigue Analysis,” J. Fail. Anal. Prev., 18(3), pp. 1–12.
Tvergaard, V. , and Hutchinson, J. W. , 1993, “ The Influence of Plasticity on Mixed Mode Interface Toughness,” J. Mech. Phys. Solids, 41(6), pp. 1119–1135. [CrossRef]
Tabiei, A. , and Zhang, W. , 2017, “ Cohesive Element Approach for Dynamic Crack Propagation: Artificial Compliance and Mesh Dependency,” Eng. Fract. Mech., 180, pp. 23–42. [CrossRef]
Manual, L. D. K. U. S. , 2013, “LS-DYNA,” Vol. II, Livermore Software Technology Corporation, Livermore, CA.
Chandra, N. , Li, H. , Shet, C. , and Ghonem, H. , 2002, “ Some Issues in the Application of Cohesive Zone Models for Metal–Ceramic Interfaces,” Int. J. Solids Struct., 39(10), pp. 2827–2855. [CrossRef]
Alfano, G. , 2006, “ On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models,” Compos. Sci. Technol., 66(6), pp. 723–730. [CrossRef]
Campilho, R. , Banea, M. D. , Neto, J. , and da Silva, L. F. , 2013, “ Modelling Adhesive Joints With Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer,” Int. J. Adhes. Adhes., 44, pp. 48–56. [CrossRef]
Volokh, K. Y. , 2004, “ Comparison Between Cohesive Zone Models,” Commun. Numer. Methods Eng., 20(11), pp. 845–856. [CrossRef]
Balzani, C. , and Wagner, W. , 2008, “ An Interface Element for the Simulation of Delamination in Unidirectional Fiber-Reinforced Composite Laminates,” Eng. Fract. Mech., 75(9), pp. 2597–2615. [CrossRef]
Jousset, P. , and Rachik, M. , 2014, “ Comparison and Evaluation of Two Types of Cohesive Zone Models for the Finite Element Analysis of Fracture Propagation in Industrial Bonded Structures,” Eng. Fract. Mech., 132, pp. 48–69. [CrossRef]
Joki, R. , Grytten, F. , Hayman, B. , and Sørensen, B. F. , 2016, “ Determination of a Cohesive Law for Delamination Modelling–Accounting for Variation in Crack Opening and Stress State Across the Test Specimen Width,” Compos. Sci. Technol., 128, pp. 49–57. [CrossRef]
Dourado, N. , de Moura, M. , de Morais, A. , and Pereira, A. , 2012, “ Bilinear Approximations to the Mode II Delamination Cohesive Law Using an Inverse Method,” Mech. Mater., 49, pp. 42–50. [CrossRef]
Nguyen, N. , and Waas, A. M. , 2016, “ A Novel Mixed-Mode Cohesive Formulation for Crack Growth Analysis,” Compos. Struct., 156, pp. 253–262. [CrossRef]
Xie, J. , Waas, A. M. , and Rassaian, M. , 2017, “ Analytical Predictions of Delamination Threshold Load of Laminated Composite Plates Subject to Flexural Loading,” Compos. Struct., 179, pp. 181–194. [CrossRef]
Xie, J. , Waas, A. M. , and Rassaian, M. , 2016, “ Closed-Form Solutions for Cohesive Zone Modeling of Delamination Toughness Tests,” Int. J. Solids Struct., 88, pp. 379–400. [CrossRef]
Long, S. , Yao, X. , and Zhang, X. , 2015, “ Delamination Prediction in Composite Laminates Under Low-Velocity Impact,” Compos. Struct., 132, pp. 290–298. [CrossRef]
Dávila, C. G. , 2007, “ Cohesive Elements for Shells,” Camanho, Pedro Manuel Ponces Rodrigues De Castro, Turon Travesa A, National Aeronautics and Space Administration Langley Research Center, Hampton, VA, Report No. NASA/TP-2007-214869. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070018344.pdf
Li, B. , Li, Y. , and Su, J. , 2014, “ A Combined Interface Element to Simulate Interfacial Fracture of Laminated Shell Structures,” Compos. Part B: Eng., 58, pp. 217–227. [CrossRef]
Dávila, C. G. , Camanho, P. P. , and Turon, A. , 2008, “ Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements,” J Aircr., 45(2), pp. 663–672. [CrossRef]
Cirak, F. , Ortiz, M. , and Pandolfi, A. , 2005, “ A Cohesive Approach to Thin-Shell Fracture and Fragmentation,” Comput. Methods Appl. Mech. Eng., 194(21–24), pp. 2604–2618. [CrossRef]
Borg, R. , Nilsson, L. , and Simonsson, K. , 2004, “ Simulating DCB, ENF and MMB Experiments Using Shell Elements and a Cohesive Zone Model,” Compos. Sci. Technol., 64(2), pp. 269–278. [CrossRef]
Allix, O. , and Corigliano, A. , 1999, “ Geometrical and Interfacial Non-Linearities in the Analysis of Delamination in Composites,” Int. J. Solids Struct., 36(15), pp. 2189–2216. [CrossRef]
Hallquist, J. O. , 2006, “LS-DYNA Theory Manual,” Vol. 3, Livermore Software Technology Corporation, Livermore, CA, pp. 25–31.
Schellekens, J. , and De Borst, R. , 1993, “ On the Numerical Integration of Interface Elements,” Int. J. Numer. Methods Eng., 36(1), pp. 43–66. [CrossRef]
Yang, Q. , Fang, X. , Shi, J. , and Lua, J. , 2010, “ An Improved Cohesive Element for Shell Delamination Analyses,” Int. J. Numer. Methods Eng., 83, pp. 611–641.
Bak, B. L. , Sarrado, C. , Turon, A. , and Costa, J. , 2014, “ Delamination Under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods,” ASME Appl. Mech. Rev., 66(6), p. 060803. [CrossRef]
Vignollet, J. , May, S. , and Borst, R. , 2015, “ On the Numerical Integration of Isogeometric Interface Elements,” Int. J. Numer. Methods Eng., 102(11), pp. 1733–1749. [CrossRef]
Do, B. , Liu, W. , Yang, Q. , and Su, X. , 2013, “ Improved Cohesive Stress Integration Schemes for Cohesive Zone Elements,” Eng. Fract. Mech., 107, pp. 14–28. [CrossRef]
Hosseini, S. , Remmers, J. J. C. , Verhoosel, C. V. , and de Borst, R. , 2014, “ An Isogeometric Continuum Shell Element for Non-Linear Analysis,” Comput. Methods Appl. Mech. Eng., 271, pp. 1–22. [CrossRef]
Hosseini, S. , Remmers, J. J. , Verhoosel, C. V. , and Borst, R. , 2015, “ Propagation of Delamination in Composite Materials With Isogeometric Continuum Shell Elements,” Int. J. Numer. Methods Eng., 102(3–4), pp. 159–179. [CrossRef]
Tomar, V. , Zhai, J. , and Zhou, M. , 2004, “ Bounds for Element Size in a Variable Stiffness Cohesive Finite Element Model,” Int. J. Numer. Methods Eng., 61(11), pp. 1894–1920. [CrossRef]
Irwin, G. , 1957, “ Relation of Stresses Near a Crack to the Crack Extension Force,” Ninth International Congress of Applied Mechanics, Brussels, Belgium, Sept. 5–13.
Rice, J. R. , and Tracey, D. M. , 1969, “ On the Ductile Enlargement of Voids in Triaxial Stress Fields,” J. Mech. Phys. Solids., 17(3), pp. 201–217. [CrossRef]
Hillerborg, A. , Modéer, M. , and Petersson, P. , 1976, “ Analysis of Crack formation and crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cem. Concr. Res., 6(6), pp. 773–781. [CrossRef]
Falk, M. L. , Needleman, A. , and Rice, J. R. , 2001, “ A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture,” Le J. De Phys. IV, 11(Pr5), pp. Pr-5-43–Pr-5-50.
Harper, P. W. , and Hallett, S. R. , 2008, “ Cohesive Zone Length in Numerical Simulations of Composite Delamination,” Eng. Fract. Mech., 75(16), pp. 4774–4792. [CrossRef]
Song, K. , Dávila, C. G. , and Rose, C. A. , 2008, “ Guidelines and Parameter Selection for the Simulation of Progressive Delamination,” ABAQUS User's Conference, Newport, RI, May 19–22, pp. 43–44. https://ntrs.nasa.gov/search.jsp?R=20080020385
Xie, D. , and Biggers, S. B. , 2006, “ Strain Energy Release Rate Calculation for a Moving Delamination Front of Arbitrary Shape Based on the Virtual Crack Closure Technique—Part I: Formulation and Validation,” Eng. Fract. Mech., 73(6), pp. 771–785. [CrossRef]
Hermes, F. H. , 2010, “ Process Zone and Cohesive Element Size in Numerical Simulations of Delamination in Bi-Layers,” Master's thesis, Eindhoven University of Technology, Eindhoven, The Netherlands. http://www.mate.tue.nl/mate/pdfs/12147.pdf
Xie, D. , and Waas, A. M. , 2006, “ Discrete Cohesive Zone Model for Mixed-Mode Fracture Using Finite Element Analysis,” Eng. Fract. Mech., 73(13), pp. 1783–1796. [CrossRef]
Sarrado, C. , Leone, F. A. , and Turon, A. , 2016, “ Finite-Thickness Cohesive Elements for Modeling Thick Adhesives,” Eng. Fract. Mech., 168, pp. 105–113. [CrossRef]
Zubillaga, L. , Turon, A. , Maimí, P. , Costa, J. , Mahdi, S. , and Linde, P. , 2014, “ An Energy Based Failure Criterion for Matrix Crack Induced Delamination in Laminated Composite Structures,” Compos. Struct., 112, pp. 339–344. [CrossRef]
Reiner, J. , Veidt, M. , Dargusch, M. , and Gross, L. A. , 2016, “ Progressive Analysis of Matrix Cracking-Induced Delamination in Composite Laminates Using an Advanced Phantom Node Method,” J. Compos. Mater., 51(20), p. 15.
Jalalvand, M. , Wisnom, M. R. , Hosseini-Toudeshky, H. , and Mohammadi, B. , 2014, “ Experimental and Numerical Study of Oblique Transverse Cracking in Cross-Ply Laminates Under Tension,” Compos. Part A: Appl. Sci. Manuf., 67, pp. 140–148. [CrossRef]
Pernice, M. F. , De Carvalho, N. V. , Ratcliffe, J. G. , and Hallett, S. R. , 2015, “ Experimental Study on Delamination Migration in Composite Laminates,” Compos. Part A: Appl. Sci. Manuf., 73, pp. 20–34. [CrossRef]
Ratcliffe, J. G. , Czabaj, M. W. , and O'Brien, T. K. , 2013, “ A Test for Characterizing Delamination Migration in Carbon/Epoxy Tape Laminates,” National Aeronautics and Space Administration Langley Research Center, Hampton, VA, Report No. NASA/TM–2013-218028. https://ntrs.nasa.gov/search.jsp?R=20140000686&hterms=Test+Charac-+terizing+Delamination+Migration+Carbon%2fEpoxy+Tape+Laminates&qs=N%3D0%26Ntk%3DAll%26Ntt%3DA%2520Test%2520for%2520Charac-%2520terizing%2520Delamination%2520Migration%2520in%2520Carbon%252FEpoxy%2520Tape%2520Laminates%26Ntx%3Dmode%2520matchallpartial
Iarve, E. V. , Gurvich, M. R. , Mollenhauer, D. H. , Rose, C. A. , and Dávila, C. G. , 2011, “ Mesh‐Independent Matrix Cracking and Delamination Modeling in Laminated Composites,” Int. J. Numer. Methods Eng., 88(8), pp. 749–773. [CrossRef]
Tay, T. , Sun, X. , and Tan, V. , 2014, “ Recent Efforts Toward Modeling Interactions of Matrix Cracks and Delaminations: An Integrated XFEM-CE Approach,” Adv. Compos. Mater., 23(5–6), pp. 391–408. [CrossRef]
Su, Z. , Tay, T. , Ridha, M. , and Chen, B. , 2015, “ Progressive Damage Modeling of Open-Hole Composite Laminates Under Compression,” Compos. Struct., 122, pp. 507–517. [CrossRef]
Hinton, M. , Kaddour, A. , and Soden, P. , 2002, “ A Comparison of the Predictive Capabilities of Current Failure Theories for Composite Laminates, Judged against Experimental Evidence,” Compos. Sci. Technol., 62(12–13), pp. 1725–1797. [CrossRef]
Kaddour, A. , Hinton, M. , Smith, P. , and Li, S. , 2013, “ A Comparison Between the Predictive Capability of Matrix Cracking, Damage and Failure Criteria for Fibre Reinforced Composite Laminates: Part a of the Third World-Wide Failure Exercise,” J. Compos. Mater., 47(20–21), pp. 2749–2779. [CrossRef]
Puck, A. , and Schürmann, H. , 2002, “ Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models,” Compos. Sci. Technol., 62(12–13), pp. 1633–1662. [CrossRef]
Liu, K. , and Tsai, S. W. , 1998, “ A Progressive Quadratic Failure Criterion for a Laminate,” Compos. Sci. Technol., 58(7), pp. 1023–1032. [CrossRef]
Wolfe, W. E. , and Butalia, T. S. , 1998, “ A Strain-Energy Based Failure Criterion for Non-Linear Analysis of Composite Laminates Subjected to Biaxial Loading,” Compos. Sci. Technol., 58(7), pp. 1107–1124. [CrossRef]
Edge, E. , 2002, “ A Comparison of Theory and Experiment for the Stress-Based Grant–Sanders Method,” Compos. Sci. Technol., 62(12–13), pp. 1571–1589. [CrossRef]
Maimı, P. , Camanho, P. , Mayugo, J. , and Turon, A. , 2011, “ Matrix Cracking and Delamination in Laminated Composites—Part I: Ply Constitutive Law, First Ply Failure and Onset of Delamination,” Mech. Mater., 43(4), pp. 169–185. [CrossRef]
Kumar, D. , Roy, R. , Kweon, J. , and Choi, J. , 2016, “ Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements,” Appl. Compos. Mater., 23(3), pp. 397–419. [CrossRef]
Li, X. , and Chen, J. , 2017, “ A Highly Efficient Prediction of Delamination Migration in Laminated Composites Using the Extended Cohesive Damage Model,” Compos. Struct., 160, pp. 712–721. [CrossRef]
Li, X. , and Chen, J. , 2016, “ An Extended Cohesive Damage Model for Simulating Multicrack Propagation in Fibre Composites,” Compos. Struct., 143, pp. 1–8. [CrossRef]
Jäger, S. , Pickett, A. , and Middendorf, P. , 2016, “ A Discrete Model for Simulation of Composites Plate Impact Including Coupled Intra-and Inter-Ply Failure,” Appl. Compos. Mater., 23(2), pp. 179–195. [CrossRef]
Shojaei, A. , Li, G. , Tan, P. J. , and Fish, J. , 2015, “ Dynamic Delamination in Laminated Fiber Reinforced Composites: A Continuum Damage Mechanics Approach,” Int. J. Solids Struct., 71, pp. 262–276. [CrossRef]
Mohammadi, B. , Olia, H. , and Hosseini-Toudeshky, H. , 2015, “ Intra and Damage Analysis of Laminated Composites Using Coupled Continuum Damage Mechanics With Cohesive Interface Layer,” Compos. Struct., 120, pp. 519–530. [CrossRef]
Topac, O. T. , Gozluklu, B. , Gurses, E. , and Coker, D. , 2017, “ Experimental and Computational Study of the Damage Process in CFRP Composite Beams Under Low-Velocity Impact,” Compos. Part A: Appl. Sci. Manuf., 92, pp. 167–182. [CrossRef]
Panettieri, E. , Fanteria, D. , Montemurro, M. , and Froustey, C. , 2016, “ Low-Velocity Impact Tests on Carbon/Epoxy Composite Laminates: A Benchmark Study,” Compos. Part B: Eng., 107, pp. 9–21. [CrossRef]
Liang, S. , Guillaumat, L. , and Gning, P. , 2015, “ Impact Behaviour of Flax/Epoxy Composite Plates,” Int. J. Impact Eng., 80, pp. 56–64. [CrossRef]
Wiegand, J. , Hornig, A. , Gerlach, R. , Neale, C. , Petrinic, N. , and Hufenbach, W. , 2015, “ An Experimental Method for Dynamic Delamination Analysis of Composite Materials by Impact Bending,” Mech. Adv. Mater. Struct., 22(5), pp. 413–421. [CrossRef]
Liu, Y. , and Liaw, B. , 2010, “ Effects of Constituents and Lay-Up Configuration on Drop-Weight Tests of Fiber-Metal Laminates,” Appl. Compos. Mater., 17(1), pp. 43–62. [CrossRef]
Maio, L. , Monaco, E. , Ricci, F. , and Lecce, L. , 2013, “ Simulation of Low Velocity Impact on Composite Laminates With Progressive Failure Analysis,” Compos. Struct., 103, pp. 75–85. [CrossRef]
Zhang, X. , Bianchi, F. , and Liu, H. , 2012, “ Predicting Low-Velocity Impact Damage in Composites by a Quasi-Static Load Model With Cohesive Interface Elements,” Aeronaut. J., 116(1186), pp. 1367–1381. [CrossRef]
Bouvet, C. , Castanié, B. , Bizeul, M. , and Barrau, J. , 2009, “ Low Velocity Impact Modelling in Laminate Composite Panels With Discrete Interface Elements,” Int. J. Solids Struct., 46(14–15), pp. 2809–2821. [CrossRef]
Li, X. , Hallett, S. R. , and Wisnom, M. R. , 2008, “ Predicting the Effect of Through-Thickness Compressive Stress on Delamination Using Interface Elements,” Compos. Part A: Appl. Sci. Manuf., 39(2), pp. 218–230. [CrossRef]
Sitnikova, E. , Li, S. , Li, D. , and Yi, X. , 2017, “ Subtle Features of Delamination in Cross-Ply Laminates Due to Low Speed Impact,” Compos. Sci. Technol., 149, pp. 149–158. [CrossRef]
Kim, E. , Rim, M. , Lee, I. , and Hwang, T. , 2013, “ Composite Damage Model Based on Continuum Damage Mechanics and Low Velocity Impact Analysis of Composite Plates,” Compos. Struct., 95, pp. 123–134. [CrossRef]
Liu, P. , Liao, B. , Jia, L. , and Peng, X. , 2016, “ Finite Element Analysis of Dynamic Progressive Failure of Carbon Fiber Composite Laminates Under Low Velocity Impact,” Compos. Struct., 149, pp. 408–422. [CrossRef]
Tan, W. , Falzon, B. G. , Chiu, L. N. , and Price, M. , 2015, “ Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behaviour of Composite Laminates,” Compos. Part A: Appl. Sci. Manuf., 71, pp. 212–226. [CrossRef]
Rivallant, S. , Bouvet, C. , and Hongkarnjanakul, N. , 2013, “ Failure Analysis of CFRP Laminates Subjected to Compression After Impact: FE Simulation Using Discrete Interface Elements,” Compos. Part A: Appl. Sci. Manuf., 55, pp. 83–93. [CrossRef]
Ruiz, G. , Pandolfi, A. , and Ortiz, M. , 2001, “ Three‐Dimensional Cohesive Modeling of Dynamic Mixed‐Mode Fracture,” Int. J. Numer. Methods Eng., 52(12), pp. 97–120. [CrossRef]
Ostré, B. , Bouvet, C. , Minot, C. , and Aboissière, J. , 2016, “ Experimental Analysis of CFRP Laminates Subjected to Compression After Edge Impact,” Compos. Struct., 152, pp. 767–778. [CrossRef]
Yu, H. , Olsen, J. S. , Olden, V. , Alvaro, A. , He, J. , and Zhang, Z. , 2016, “ Viscous Regularization for Cohesive Zone Modeling Under Constant Displacement: An Application to Hydrogen Embrittlement Simulation,” Eng. Fract. Mech., 166, pp. 23–42. [CrossRef]
Rivallant, S. , Bouvet, C. , Abdallah, E. A. , Broll, B. , and Barrau, J. , 2014, “ Experimental Analysis of CFRP Laminates Subjected to Compression After Impact: The Role of Impact-Induced Cracks in Failure,” Compos. Struct., 111, pp. 147–157. [CrossRef]
ASTM, 2015, “Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event,” ASTM International, West Conshohocken, PA, Standard No. ASTM D7136/D7136M-15.
Evci, C. , and Gülgeç, M. , 2012, “ An Experimental Investigation on the Impact Response of Composite Materials,” Int. J. Impact Eng., 43, pp. 40–51. [CrossRef]
Zhang, D. , Sun, Y. , Chen, L. , and Pan, N. , 2013, “ A Comparative Study on Low-Velocity Impact Response of Fabric Composite Laminates,” Mater. Des., 50, pp. 750–756. [CrossRef]
Mouritz, A. , 2013, “ Delamination Properties of z-Pinned Composites in Hot–Wet Environment,” Compos. Part A: Appl. Sci. Manuf., 52, pp. 134–142. [CrossRef]
Shyr, T. , and Pan, Y. , 2003, “ Impact Resistance and Damage Characteristics of Composite Laminates,” Compos. Struct., 62(2), pp. 193–203. [CrossRef]
Sutherland, L. , and Soares, C. G. , 2012, “ The Use of Quasi-Static Testing to Obtain the Low-Velocity Impact Damage Resistance of Marine GRP Laminates,” Compos. Part B: Eng., 43(3), pp. 1459–1467. [CrossRef]
Guan, Z. , He, W. , Chen, J. , and Liu, L. , 2014, “ Permanent Indentation and Damage Creation of Laminates With Different Composite Systems: An Experimental Investigation,” Polym. Compos., 35(5), pp. 872–883. [CrossRef]
Wagih, A. , Maimí, P. , Blanco, N. , and Costa, J. , 2016, “ A Quasi-Static Indentation Test to Elucidate the Sequence of Damage Events in Low Velocity Impacts on Composite Laminates,” Compos. Part A: Appl. Sci. Manuf., 82, pp. 180–189. [CrossRef]
May, M. , 2016, “ Measuring the Rate-Dependent Mode I Fracture Toughness of Composites–a Review,” Compos. Part A: Appl. Sci. Manuf., 81, pp. 1–12. [CrossRef]
Jacob, G. C. , Starbuck, J. M. , Fellers, J. F. , Simunovic, S. , and Boeman, R. G. , 2005, “ The Effect of Loading Rate on the Fracture Toughness of Fiber Reinforced Polymer Composites,” J. Appl. Polym. Sci., 96(3), pp. 899–904. [CrossRef]
Zabala, H. , Aretxabaleta, L. , Castillo, G. , and Aurrekoetxea, J. , 2015, “ Loading Rate Dependency on Mode I Interlaminar Fracture Toughness of Unidirectional and Woven Carbon Fibre Epoxy Composites,” Compos. Struct., 121, pp. 75–82. [CrossRef]
Navarro, P. , Aubry, J. , Pascal, F. , Marguet, S. , Ferrero, J. , and Dorival, O. , 2014, “ Influence of the Stacking Sequence and Crack Velocity on Fracture Toughness of Woven Composite Laminates in Mode I,” Eng. Fract. Mech., 131, pp. 340–348. [CrossRef]
Cui, H. , Yasaee, M. , Kalwak, G. , Pellegrino, A. , Partridge, I. K. , Hallett, S. R. , et al. ., 2017, “ Bridging Mechanisms of Through-Thickness Reinforcement in Dynamic Mode I&II Delamination,” Compos. Part A: Appl. Sci. Manuf., 99, pp. 198–207. [CrossRef]
Kusaka, T. , Hojo, M. , Mai, Y. , Kurokawa, T. , Nojima, T. , and Ochiai, S. , 1998, “ Rate Dependence of Mode I Fracture Behaviour in Carbon-Fibre/Epoxy Composite Laminates,” Compos. Sci. Technol., 58(3–4), pp. 591–602. [CrossRef]
Hug, G. , Thevenet, P. , Fitoussi, J. , and Baptiste, D. , 2006, “ Effect of the Loading Rate on Mode I Interlaminar Fracture Toughness of Laminated Composites,” Eng. Fract. Mech., 73(16), pp. 2456–2462. [CrossRef]
de Verdiere, M. C. , Skordos, A. , Walton, A. , and May, M. , 2012, “ Influence of Loading Rate on the Delamination Response of Untufted and Tufted Carbon Epoxy Non-Crimp Fabric Composites/Mode II,” Eng. Fract. Mech., 96, pp. 1–10. [CrossRef]
Zhang, X. , Hounslow, L. , and Grassi, M. , 2006, “ Improvement of Low-Velocity Impact and Compression-After-Impact Performance by z-Fibre Pinning,” Compos. Sci. Technol., 66(15), pp. 2785–2794. [CrossRef]
ASTM, 2012, “ Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates,” ASTM International, West Conshohocken, PA, Standard no. ASTM D7137/D7137M-17. https://www.astm.org/Standards/D7137.htm
Hart, K. R. , Chia, P. X. , Sheridan, L. E. , Wetzel, E. D. , Sottos, N. R. , and White, S. R. , 2017, “ Comparison of Compression-After-Impact and Flexure-After-Impact Protocols for 2D and 3D Woven Fiber-Reinforced Composites,” Compos. Part A: Appl. Sci. Manuf., 101, pp. 471–479.
Sánchez-Sáez, S. , Barbero, E. , Zaera, R. , and Navarro, C. , 2005, “ Compression After Impact of Thin Composite Laminates,” Compos. Sci. Technol., 65(13), pp. 1911–1919. [CrossRef]
Aktaş, A. , Aktaş, M. , and Turan, F. , 2014, “ Impact and Post Impact (CAI) Behavior of Stitched Woven–Knit Hybrid Composites,” Compos. Struct., 116, pp. 243–253. [CrossRef]
Erdogan, G. , and Bilisik, K. , 2017, “ Compression After Low Velocity Impact (CAI) Properties of Multi-Stitched Composites,” Mech. Adv. Mater. Struct., 25(8), pp. 623–636.
Remacha, M. , Sánchez-Sáez, S. , López-Romano, B. , and Barbero, E. , 2015, “ A New Device for Determining the Compression After Impact Strength in Thin Laminates,” Compos. Struct., 127, pp. 99–107. [CrossRef]
Cromer, K. , Gillespie , J. W., Jr. , and Keefe, M. , 2012, “ Effect of Multiple Non-Coincident Impacts on Residual Properties of Glass/Epoxy Laminates,” J. Reinf. Plast. Compos., 31(12), pp. 815–827. [CrossRef]
Zhang, Z. , Shankar, K. , Morozov, E. V. , and Tahtali, M. , 2016, “ Vibration-Based Delamination Detection in Composite Beams Through Frequency Changes,” J. Vib. Control, 22(2), pp. 496–512. [CrossRef]
Sohn, H. , Dutta, D. , Yang, J. , Park, H. , DeSimio, M. , Olson, S. , et al. ., 2011, “ Delamination Detection in Composites Through Guided Wave Field Image Processing,” Compos. Sci. Technol., 71(9), pp. 1250–1256. [CrossRef]
Tian, Z. , Yu, L. , and Leckey, C. , 2015, “ Delamination Detection and Quantification on Laminated Composite Structures With Lamb Waves and Wavenumber Analysis,” J. Intell. Mater. Syst. Struct., 26(13), pp. 1723–1738. [CrossRef]
Pasquali, M. , and Lacarbonara, W. , 2015, “ Delamination Detection in Composite Laminates Using High-Frequency P-and S-Waves—Part I: Theory and Analysis,” Compos. Struct., 134, pp. 1095–1108. [CrossRef]
Rogge, M. D. , and Leckey, C. A. , 2013, “ Characterization of Impact Damage in Composite Laminates Using Guided Wavefield Imaging and Local Wavenumber Domain Analysis,” Ultrasonics, 53(7), pp. 1217–1226. [CrossRef] [PubMed]
Saeedi, N. , Sab, K. , and Caron, J. , 2012, “ Delaminated Multilayered Plates Under Uniaxial Extension—Part I: Analytical Analysis Using a Layerwise Stress Approach,” Int. J. Solids Struct., 49(26), p. 3711. [CrossRef]
Ghadermazi, K. , Khozeimeh, M. , Taheri-Behrooz, F. , and Safizadeh, M. , 2015, “ Delamination Detection in Glass–Epoxy Composites Using Step-Phase Thermography (SPT),” Infrared Phys. Technol., 72, pp. 204–209. [CrossRef]
Takeda, S. , Minakuchi, S. , Okabe, Y. , and Takeda, N. , 2005, “ Delamination Monitoring of Laminated Composites Subjected to Low-Velocity Impact Using Small-Diameter FBG Sensors,” Compos. Part A: Appl. Sci. Manuf., 36(7), pp. 903–908. [CrossRef]
Frieden, J. , Cugnoni, J. , Botsis, J. , and Gmür, T. , 2012, “ Low Energy Impact Damage Monitoring of Composites Using Dynamic Strain Signals From FBG Sensors–Part I: Impact Detection and Localization,” Compos. Struct., 94(2), pp. 438–445. [CrossRef]
Hu, H. , Li, S. , Wang, J. , Wang, Y. , and Zu, L. , 2016, “ FBG-Based Real-Time Evaluation of Transverse Cracking in Cross-Ply Laminates,” Compos. Struct., 138, pp. 151–160. [CrossRef]
Zhu, Q. , Xu, C. , and Yang, G. , 2017, “ Experimental Research on Damage Detecting in Composite Materials With FBG Sensors Under Low Frequency Cycling,” Int. J. Fatigue, 101, pp. 61–66. [CrossRef]
Amenabar, I. , Mendikute, A. , López-Arraiza, A. , Lizaranzu, M. , and Aurrekoetxea, J. , 2011, “ Comparison and Analysis of Non-Destructive Testing Techniques Suitable for Delamination Inspection in Wind Turbine Blades,” Compos. Part B: Eng., 42(5), pp. 1298–1305. [CrossRef]
Post, W. , Kersemans, M. , Solodov, I. , Van Den Abeele, K. , García, S. , and van der Zwaag, S. , 2017, “ Non-Destructive Monitoring of Delamination Healing of a CFRP Composite With a Thermoplastic Ionomer Interlayer,” Compos. Part A: Appl. Sci. Manuf., 101, pp. 243–253. [CrossRef]
Abot, J. L. , Song, Y. , Vatsavaya, M. S. , Medikonda, S. , Kier, Z. , Jayasinghe, C. , et al. ., 2010, “ Delamination Detection With Carbon Nanotube Thread in Self-Sensing Composite Materials,” Compos. Sci. Technol., 70(7), pp. 1113–1119. [CrossRef]
Wen, J. , Xia, Z. , and Choy, F. , 2011, “ Damage Detection of Carbon Fiber Reinforced Polymer Composites Via Electrical Resistance Measurement,” Compos. Part B: Eng., 42(1), pp. 77–86. [CrossRef]
Roe, K. , and Siegmund, T. , 2003, “ An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation,” Eng. Fract. Mech., 70(2), pp. 209–232. [CrossRef]
Lemaitre, J. , 2012, A Course on Damage Mechanics, Springer Science & Business Media, Heidelberg, Germany.
Jiang, H. , Gao, X. , and Srivatsan, T. S. , 2009, “ Predicting the Influence of Overload and Loading Mode on Fatigue Crack Growth: A Numerical Approach Using Irreversible Cohesive Elements,” Finite Elem. Anal Des, 45(10), pp. 675–685. [CrossRef]
Beaurepaire, P. , and Schuëller, G. , 2011, “ Modeling of the Variability of Fatigue Crack Growth Using Cohesive Zone Elements,” Eng. Fract. Mech., 78(12), pp. 2399–2413. [CrossRef] [PubMed]
Siegmund, T. , 2004, “ A Numerical Study of Transient Fatigue Crack Growth by Use of an Irreversible Cohesive Zone Model,” Int. J. Fatigue, 26(9), pp. 929–939. [CrossRef]
Bouvard, J. , Chaboche, J. , Feyel, F. , and Gallerneau, F. , 2009, “ A Cohesive Zone Model for Fatigue and Creep–Fatigue Crack Growth in Single Crystal Superalloys,” Int. J. Fatigue, 31(5), pp. 868–879. [CrossRef]
Maiti, S. , and Geubelle, P. H. , 2005, “ A Cohesive Model for Fatigue Failure of Polymers,” Eng. Fract. Mech., 72(5), pp. 691–708. [CrossRef]
Wang, B. , and Siegmund, T. , 2006, “ Simulation of Fatigue Crack Growth at Plastically Mismatched Bi-Material Interfaces,” Int. J. Plast., 22(9), pp. 1586–1609. [CrossRef]
Yao, L. , Alderliesten, R. , Zhao, M. , and Benedictus, R. , 2014, “ Discussion on the Use of the Strain Energy Release Rate for Fatigue Delamination Characterization,” Compos. Part A: Appl. Sci. Manuf., 66, pp. 65–72. [CrossRef]
Allegri, G. , Wisnom, M. , and Hallett, S. , 2013, “ A New Semi-Empirical Law for Variable Stress-Ratio and Mixed-Mode Fatigue Delamination Growth,” Compos. Part A: Appl. Sci. Manuf., 48, pp. 192–200. [CrossRef]
Al-Khudairi, O. , Hadavinia, H. , Waggott, A. , Lewis, E. , and Little, C. , 2015, “ Characterising Mode I/Mode II Fatigue Delamination Growth in Unidirectional Fibre Reinforced Polymer Laminates,” Mater. Des., 66, pp. 93–102. [CrossRef]
Kenane, M. , 2009, “ Delamination Growth in Unidirectional Glass/Epoxy Composite Under Static and Fatigue Loads,” Phys. Procedia, 2(3), pp. 1195–1203. [CrossRef]
Paris, P. C. , Gomez, M. P. , and Anderson, W. E. , 1961, “ A Rational Analytic Theory of Fatigue,” Trend Eng., 13, pp. 9–14. https://ci.nii.ac.jp/naid/10018490580/en/
Alderliesten, R. , Schijve, J. , and Van der Zwaag, S. , 2006, “ Application of the Energy Release Rate Approach for Delamination Growth in Glare,” Eng. Fract. Mech., 73(6), pp. 697–709. [CrossRef]
Jones, R. , Pitt, S. , Bunner, A. , and Hui, D. , 2012, “ Application of the Hartman–Schijve Equation to Represent Mode I and Mode II Fatigue Delamination Growth in Composites,” Compos. Struct., 94(4), pp. 1343–1351. [CrossRef]
Landry, B. , and LaPlante, G. , 2012, “ Modeling Delamination Growth in Composites Under Fatigue Loadings of Varying Amplitudes,” Compos. Part B: Eng., 43(2), pp. 533–541. [CrossRef]
Kenane, M. , and Benzeggagh, M. , 1997, “ Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites Under Fatigue Loading,” Compos. Sci. Technol., 57(5), pp. 597–605. [CrossRef]
May, M. , and Hallett, S. R. , 2010, “ A Combined Model for Initiation and Propagation of Damage Under Fatigue Loading for Cohesive Interface Elements,” Compos. Part A: Appl. Sci. Manuf., 41(12), pp. 1787–1796. [CrossRef]
Moroni, F. , and Pirondi, A. , 2011, “ A Procedure for the Simulation of Fatigue Crack Growth in Adhesively Bonded Joints Based on the Cohesive Zone Model and Different Mixed-Mode Propagation Criteria,” Eng. Fract. Mech., 78(8), pp. 1808–1816. [CrossRef]
Kawashita, L. F. , and Hallett, S. R. , 2012, “ A Crack Tip Tracking Algorithm for Cohesive Interface Element Analysis of Fatigue Delamination Propagation in Composite Materials,” Int. J. Solids Struct., 49(21), pp. 2898–2913. [CrossRef]
Naghipour, P. , Bartsch, M. , and Voggenreiter, H. , 2011, “ Simulation and Experimental Validation of Mixed Mode Delamination in Multidirectional CF/PEEK Laminates Under Fatigue Loading,” Int. J. Solids Struct., 48(6), pp. 1070–1081. [CrossRef]
Wang, C. , and Xu, X. , 2015, “ Cohesive Element Analysis of Fatigue Delamination Propagation in Composite Materials With Improved Crack Tip Tracking Algorism,” Compos. Struct., 134, pp. 176–184. [CrossRef]
Bak, B. , Turon, A. , Lindgaard, E. , and Lund, E. , 2017, “ A Benchmark Study of Simulation Methods for High-Cycle Fatigue-Driven Delamination Based on Cohesive Zone Models,” Compos. Struct., 164, pp. 198–206. [CrossRef]
Zhang, W. , and Tabiei, A. , 2017, “ Fatigue Life Prediction of Composite Material's Adhesive Joints in Automotive Applications,” Int. J. Autom. Compos., 3(1), pp. 61–79. [CrossRef]
ASTM, 2011, “Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” ASTM International, West Conshohocken, PA, Standard No. ASTM D6115-97(2011). https://www.astm.org/Standards/D6115.htm
Sjögren, A. , and Asp, L. E. , 2002, “ Effects of Temperature on Delamination Growth in a Carbon/Epoxy Composite Under Fatigue Loading,” Int. J. Fatigue, 24(2–4), pp. 179–184. [CrossRef]
Blanco, N. , Gamstedt, E. K. , Asp, L. , and Costa, J. , 2004, “ Mixed-Mode Delamination Growth in Carbon–Fibre Composite Laminates Under Cyclic Loading,” Int. J. Solids Struct., 41(15), pp. 4219–4235. [CrossRef]
Shivakumar, K. , Chen, H. , Abali, F. , Le, D. , and Davis, C. , 2006, “ A Total Fatigue Life Model for Mode I Delaminated Composite Laminates,” Int. J. Fatigue, 28(1), pp. 33–42. [CrossRef]
Hojo, M. , Ando, T. , Tanaka, M. , Adachi, T. , Ochiai, S. , and Endo, Y. , 2006, “ Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates With Self-Same Epoxy Interleaf,” Int. J. Fatigue, 28(10), pp. 1154–1165. [CrossRef]
Brunner, A. , Stelzer, S. , Pinter, G. , and Terrasi, G. , 2013, “ Mode II Fatigue Delamination Resistance of Advanced Fiber-Reinforced Polymer–Matrix Laminates: Towards the Development of a Standardized Test Procedure,” Int. J. Fatigue, 50, pp. 57–62. [CrossRef]
Peng, L. , Xu, J. , Zhang, J. , and Zhao, L. , 2012, “ Mixed Mode Delamination Growth of Multidirectional Composite Laminates Under Fatigue Loading,” Eng. Fract. Mech., 96, pp. 676–686. [CrossRef]
Fernández, M. , De Moura, M. , Da Silva, L. , and Marques, A. , 2013, “ Mixed-Mode I II Fatigue/Fracture Characterization of Composite Bonded Joints Using the Single-Leg Bending Test,” Compos. Part A: Appl. Sci. Manuf., 44, pp. 63–69. [CrossRef]
Khan, R. , Alderliesten, R. , Badshah, S. , and Benedictus, R. , 2015, “ Effect of Stress Ratio or Mean Stress on Fatigue Delamination Growth in Composites: Critical Review,” Compos. Struct., 124, pp. 214–227. [CrossRef]
Pegorin, F. , Pingkarawat, K. , and Mouritz, A. , 2015, “ Comparative Study of the Mode I and Mode II Delamination Fatigue Properties of z-Pinned Aircraft Composites,” Mater. Des., 65, pp. 139–146. [CrossRef]
Matsubara, G. , Ono, H. , and Tanaka, K. , 2006, “ Mode II Fatigue Crack Growth From Delamination in Unidirectional Tape and Satin-Woven Fabric Laminates of High Strength GFRP,” Int. J. Fatigue, 28(10), pp. 1177–1186. [CrossRef]
Coronado, P. , Argüelles, A. , Viña, J. , and Viña, I. , 2014, “ Influence of Low Temperatures on the Phenomenon of Delamination of Mode I Fracture in Carbon-Fibre/Epoxy Composites Under Fatigue Loading,” Compos. Struct., 112, pp. 188–193. [CrossRef]
Charalambous, G. , Allegri, G. , and Hallett, S. R. , 2015, “ Temperature Effects on Mixed Mode I/II Delamination Under Quasi-Static and Fatigue Loading of a Carbon/Epoxy Composite,” Compos. Part A: Appl. Sci. Manuf., 77, pp. 75–86. [CrossRef]
Nakai, Y. , and Hiwa, C. , 2002, “ Effects of Loading Frequency and Environment on Delamination Fatigue Crack Growth of CFRP,” Int. J. Fatigue, 24(2–4), pp. 161–170. [CrossRef]
Stelzer, S. , Brunner, A. , Argüelles, A. , Murphy, N. , and Pinter, G. , 2012, “ Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure,” Compos. Sci. Technol., 72(10), pp. 1102–1107. [CrossRef]
Carreras, L. , Renart, J. , Turon, A. , Costa, J. , Essa, Y. , and de la Escalera, F. M. , 2017, “ An Efficient Methodology for the Experimental Characterization of Mode II Delamination Growth Under Fatigue Loading,” Int. J. Fatigue, 95, pp. 185–193. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

An illustration of a double cantilever beam test

Grahic Jump Location
Fig. 2

An illustration of an ENF, 4ENF and ELS test

Grahic Jump Location
Fig. 3

An illustration of a MMB test

Grahic Jump Location
Fig. 4

An illustration of (a) ADCB and (b) A Brazilian specimen (Adapted from Ref. [87] with permission of John Wiley and Sons)

Grahic Jump Location
Fig. 5

An illustration of the VCCT

Grahic Jump Location
Fig. 6

An illustration of FNM

Grahic Jump Location
Fig. 7

The refinement element used in FNM

Grahic Jump Location
Fig. 8

FNM implemented in shell elements

Grahic Jump Location
Fig. 9

An illustration of the cohesive zone and cohesive law

Grahic Jump Location
Fig. 10

(a) Intrinsic cohesive law and (b) extrinsic cohesive law

Grahic Jump Location
Fig. 11

An illustration of a cohesive element and its mid surface

Grahic Jump Location
Fig. 12

Cohesive elements for (a) solid elements and (b) shell elements

Grahic Jump Location
Fig. 13

An example of delamination initiated from transverse cracks

Grahic Jump Location
Fig. 14

Modeling of delamination and matrix cracking using cohesive elements

Grahic Jump Location
Fig. 15

Three types of matrix cracks inside the ply

Grahic Jump Location
Fig. 16

Schematic representation of impact damage mode of composite laminate

Grahic Jump Location
Fig. 17

(a) A typical illustration of FCGR and (b) energy release rate in cohesive law

Grahic Jump Location
Fig. 18

Cyclic loading and load envelope

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In