0
Review Article

A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering

[+] Author and Article Information
Robert J. Lang

Lang Origami,
Alamo, CA 94507
e-mail: robert@langorigami.com

Kyler A. Tolman, Erica B. Crampton

Department of Mechanical Engineering,
Brigham Young University,
Provo, UT 84602

Spencer P. Magleby

Department of Mechanical Engineering,
Brigham Young University,
Provo, UT 84602
e-mail: magleby@byu.edu

Larry L. Howell

Department of Mechanical Engineering,
Brigham Young University,
Provo, UT 84602
e-mail: lhowell@byu.edu

1Corresponding author.

Manuscript received September 30, 2016; final manuscript received February 21, 2017; published online February 28, 2018. Editor: Harry Dankowicz.

Appl. Mech. Rev 70(1), 010805 (Feb 28, 2018) (20 pages) Paper No: AMR-16-1078; doi: 10.1115/1.4039314 History: Received September 30, 2016; Revised February 21, 2017

Origami has served as the inspiration for a number of engineered systems. In most cases, they require nonpaper materials where material thickness is non-negligible. Foldable mechanisms based on origami-like forms present special challenges for preserving kinematics and assuring non-self-intersection when the thickness of the panels must be accommodated. Several design approaches for constructing thick origami mechanisms by beginning with a zero-thickness origami pattern and transforming it into a rigidly foldable mechanism with thick panels are reviewed. The review includes existing approaches and introduces new hybrid approaches. The approaches are compared and contrasted and their manufacturability analyzed.

Copyright © 2018 by ASME
Topics: Hinges , Design
Your Session has timed out. Please sign back in to continue.

References

Shunboku, O. , 1734, Ranma Zushki [Designs for Decorative Transoms], Edo, Japan.
Hull, T. , ed., 2002, Origami3, A K Peters, Natick, MA [CrossRef]
Lang, R. J. , ed., 2009, Origami4, A K Peters, Natick, MA.
Wang-Iverson, P. , Lang, R. J. , and Yim, M. , eds., 2011, Origami5, A K Peters, Natick, MA.
Miura, K. , Kawasaki, T. , Tachi, T. , Uehara, R. , Lang, R. J. , and Wang-Iverson, P. , eds., 2016, Origami6, American Mathematical Society, Providence, RI.
Harne, R. L. , and Lynd, D. T. , 2016, “ Origami Acoustics: Using Principles of Folding Structural Acoustics for Simple and Large Focusing of Sound Energy,” Smart Mater. Struct., 25(8), p. 085031. [CrossRef]
Lynd, D. T. , and Harne, R. L. , 2016, “ Acoustic Beamfolding: New Potentials Enabled by Interfacing Reconfigurable Origami and Acoustic Structures,” J. Acoust. Soc. Am., 139(4), pp. 2083–2083. [CrossRef]
Takenaka, T. , and Okabe, A. , 2013, “ A Computational Method for Integrating Parametric Origami Design and Acoustic Engineering,” 31st International Conference on Education and Research in Computer Aided Architectural Design in Europe, Newcastle upon Tyne, UK, Sept. 10–12, pp. 289–295.
Peraza-Hernandez, E. A. , Hartl, D. J. , Malak , R. J., Jr. , and Lagoudas, D. C. , 2014, “ Origami-Inspired Active Structures: A Synthesis and Review,” Smart Mater. Struct., 23(9), p. 094001. [CrossRef]
Cromvik, C. , and Eriksson, K. , 2006, “ Airbag Folding Based on Origami Mathematics,” Fourth International Meeting of Origami Science, Mathematics, and Education (4OSME), Pasadena, CA, Sept. 8–10, pp. 129–139.
Hoffmann, R. , 2001, “ Airbag Folding: Origami Design Applied to an Engineering Problem,” Third International Meeting of Origami Science, Math, and Education (3OSME), Asilomar, CA, Mar. 9–11, pp. 9–11.
Mroz, K. , and Pipkorn, B. , 2007, “ Mathematical Modelling of the Early Phase Deployment of a Passenger Airbag–Folding Using Origami Theory and Inflation Using LS-DYNA Particle Method,” Sixth European LS-DYNA Users Conference, Gothenburg, Sweden, May 29–30, pp. 4.71–4.86.
Bruton, J. T. , Nelson, T. G. , Zimmerman, T. K. , Fernelius, J. D. , Magleby, S. P. , and Howell, L. L. , 2016, “ Packing and Deploying Soft Origami to and From Cylindrical Volumes With Application to Automotive Airbags,” R. Soc. Open Sci., 3(9), p. 160429.
Song, Z. , Ma, T. , Tang, R. , Cheng, Q. , Wang, X. , Krishnaraju, D. , Panat, R. , Chan, C. K. , Yu, H. , and Jiang, H. , 2014, “ Origami Lithium-Ion Batteries,” Nat. Commun., 5, p. 3140.
Lee, H. , and Choi, S. , 2015, “ An Origami Paper-Based Bacteria-Powered Battery,” Nano Energy, 15, pp. 549–557. [CrossRef]
Cheng, Q. , Song, Z. , Ma, T. , Smith, B. B. , Tang, R. , Yu, H. , Jiang, H. , and Chan, C. K. , 2013, “ Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities,” Nano Lett., 13(10), pp. 4969–4974. [CrossRef] [PubMed]
Nam, I. , Kim, G.-P. , Park, S. , Han, J. W. , and Yi, J. , 2014, “ All-Solid-State, Origami-Type Foldable Supercapacitor Chips With Integrated Series Circuit Analogues,” Energy Environ. Sci., 7(3), pp. 1095–1102. [CrossRef]
Thrall, A. , and Quaglia, C. , 2014, “ Accordion Shelters: A Historical Review of Origami-Like Deployable Shelters Developed by the U.S. Military,” Eng. Struct., 59, pp. 686–692. [CrossRef]
Lee, T.-U. , and Gattas, J. M. , 2016, “ Geometric Design and Construction of Structurally Stabilized Accordion Shelters,” ASME J. Mech. Rob., 8(3), p. 031009. [CrossRef]
De Temmerman, N. , Mollaert, M. , Van Mele, T. , and De Laet, L. , 2007, “ Design and Analysis of a Foldable Mobile Shelter System,” Int. J. Space Struct., 22(3), pp. 161–168. [CrossRef]
Martínez-Martín, F. , and Thrall, A. , 2014, “ Honeycomb Core Sandwich Panels for Origami-Inspired Deployable Shelters: Multi-Objective Optimization for Minimum Weight and Maximum Energy Efficiency,” Eng. Struct., 69, pp. 158–167. [CrossRef]
De Temmerman, N. , Roovers, K. , Mira, L. A. , Vergauwen, A. , Koumar, A. , Brancart, S. , De Laet, L. , and Mollaert, M. , 2014, “ Lightweight Transformable Structures: Materialising the Synergy Between Architectural and Structural Engineering,” Mobile and Rapidly Assembled Structures IV, Vol. 136, WIT Press, Ashurst, UK, p. 1.
Quaglia, C. , Dascanio, A. , and Thrall, A. , 2014, “ Bascule Shelters: A Novel Erection Strategy for Origami-Inspired Deployable Structures,” Eng. Struct., 75, pp. 276–287. [CrossRef]
Rothemund, P. W. , 2006, “ Folding DNA to Create Nanoscale Shapes and Patterns,” Nature, 440(7082), pp. 297–302. [CrossRef] [PubMed]
Maune, H. T. , Han, S.-P. , Barish, R. D. , Bockrath, M. , Goddard , W. A., III , Rothemund, P. W. , and Winfree, E. , 2010, “ Self-Assembly of Carbon Nanotubes Into Two-Dimensional Geometries Using DNA Origami Templates,” Nat. Nanotechnol., 5(1), pp. 61–66. [CrossRef] [PubMed]
Douglas, S. M. , Marblestone, A. H. , Teerapittayanon, S. , Vazquez, A. , Church, G. M. , and Shih, W. M. , 2009, “ Rapid Prototyping of 3D DNA-Origami Shapes With caDNAno,” Nucl. Acids Res., 37(15), pp. 5001–5006. [CrossRef]
Tørring, T. , Voigt, N. V. , Nangreave, J. , Yan, H. , and Gothelf, K. V. , 2011, “ DNA Origami: A Quantum Leap for Self-Assembly of Complex Structures,” Chem. Soc. Rev., 40(12), pp. 5636–5646. [CrossRef] [PubMed]
Voigt, N. V. , Tørring, T. , Rotaru, A. , Jacobsen, M. F. , Ravnsbæk, J. B. , Subramani, R. , Mamdouh, W. , Kjems, J. , Mokhir, A. , Besenbacher, F. , and Gothelf, K. , 2010, “ Single-Molecule Chemical Reactions on DNA Origami,” Nat. Nanotechnol., 5(3), pp. 200–203. [CrossRef] [PubMed]
Ma, J. , and You, Z. , 2014, “ Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation,” ASME J. Appl. Mech., 81(1), p. 011003. [CrossRef]
Song, J. , Chen, Y. , and Lu, G. , 2012, “ Axial Crushing of Thin-Walled Structures With Origami Patterns,” Thin-Walled Struct., 54, pp. 65–71. [CrossRef]
Ma, J. , and You, Z. , 2011, “ The Origami Crash Box,” Origami 5, A K Peters, Natick, MA, pp. 277–290. [CrossRef]
Tolman, S. S. , Delimont, I. L. , Howell, L. L. , and Fullwood, D. T. , 2014, “ Material Selection for Elastic Energy Absorption in Origami-Inspired Compliant Corrugations,” Smart Mater. Struct., 23(9), p. 094010. [CrossRef]
Fischer, S. , Drechsler, K. , Kilchert, S. , and Johnson, A. , 2009, “ Mechanical Tests for Foldcore Base Material Properties,” Composites, Part A, 40(12), pp. 1941–1952. [CrossRef]
Heimbs, S. , Cichosz, J. , Klaus, M. , Kilchert, S. , and Johnson, A. , 2010, “ Sandwich Structures With Textile-Reinforced Composite Foldcores Under Impact Loads,” Compos. Struct., 92(6), pp. 1485–1497. [CrossRef]
Baranger, E. , Guidault, P.-A. , and Cluzel, C. , 2011, “ Numerical Modeling of the Geometrical Defects of an Origami-Like Sandwich Core,” Compos. Struct., 93(10), pp. 2504–2510. [CrossRef]
Zhou, X. , Wang, H. , and You, Z. , 2014, “ Mechanical Properties of Miura-Based Folded Cores Under Quasi-Static Loads,” Thin-Walled Struct., 82, pp. 296–310. [CrossRef]
Randall, C. L. , Gultepe, E. , and Gracias, D. H. , 2012, “ Self-Folding Devices and Materials for Biomedical Applications,” Trends Biotechnol., 30(3), pp. 138–146. [CrossRef] [PubMed]
Kuribayashi, K. , Tsuchiya, K. , You, Z. , Tomus, D. , Umemoto, M. , Ito, T. , and Sasaki, M. , 2006, “ Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil,” Mater. Sci. Eng.: A, 419(1–2), pp. 131–137. [CrossRef]
You, Z. , and Kuribayashi, K. , 2009, “ Expandable Tubes With Negative Poisson's Ratio and Their Applications in Medicine,” Origami4, R. J. Lang , ed., A K Peters, Natick, MA, pp. 117–128. [CrossRef]
Ge, L. , Wang, S. , Song, X. , Ge, S. , and Yu, J. , 2012, “ 3D Origami-Based Multifunction-Integrated Immunodevice: Low-Cost and Multiplexed Sandwich Chemiluminescence Immunoassay on Microfluidic Paper-Based Analytical Device,” Lab Chip, 12(17), pp. 3150–3158. [CrossRef] [PubMed]
Li, L. , Xu, J. , Zheng, X. , Ma, C. , Song, X. , Ge, S. , Yu, J. , and Yan, M. , 2014, “ Growth of Gold-Manganese Oxide Nanostructures on a 3D Origami Device for Glucose-Oxidase Label Based Electrochemical Immunosensor,” Biosens. Bioelectron., 61, pp. 76–82. [CrossRef] [PubMed]
Edmondson, B. J. , Bowen, L. A. , Grames, C. L. , Magleby, S. P. , Howell, L. L. , and Bateman, T. C. , 2013, “ Oriceps: Origami-Inspired Forceps,” ASME Paper No. SMASIS2013-3299.
Rogers, J. , Huang, Y. , Schmidt, O. G. , and Gracias, D. H. , 2016, “ Origami MEMS and NEMS,” MRS Bull., 41(2), pp. 123–129. [CrossRef]
Fleischmann, T. , Kubota, K. , Vaccaro, P. , Wang, T.-S. , Saravanan, S. , and Saito, N. , 2004, “ Self-Assembling GaAs Mirror With Electrostatic Actuation Using Micro-Origami,” Physica E, 24(1–2), pp. 78–81. [CrossRef]
Vorob'ev, A. , Vaccaro, P. , Kubota, K. , Saravanan, S. , and Aida, T. , 2003, “ Array of Micromachined Components Fabricated Using Micro-Origami Method,” Jpn. J. Appl. Phys., 42(6B), p. 4024. [CrossRef]
Zhao, Y. , Nandra, M. , and Tai, Y. , 2011, “ A MEMS Intraocular Origami Coil,” IEEE 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, June 5–9, pp. 2172–2175.
Ocampo, J. M. Z. , Vaccaro, P. O. , Fleischmann, T. , Wang, T.-S. , Kubota, K. , Aida, T. , Ohnishi, T. , Sugimura, A. , Izumoto, R. , Hosoda, M. , and Nashima, S. , 2003, “ Optical Actuation of Micromirrors Fabricated by the Micro-Origami Technique,” Appl. Phys. Lett., 83(18), pp. 3647–3649. [CrossRef]
Leong, T. G. , Zarafshar, A. M. , and Gracias, D. H. , 2010, “ Three-Dimensional Fabrication at Small Size Scales,” Small, 6(9), pp. 792–806. [CrossRef] [PubMed]
Felton, S. , Tolley, M. , Demaine, E. , Rus, D. , and Wood, R. , 2014, “ A Method for Building Self-Folding Machines,” Science, 345(6197), pp. 644–646. [CrossRef] [PubMed]
Lee, D.-Y. , Kim, J.-S. , Kim, S.-R. , Koh, J.-S. , and Cho, K.-J. , 2013, “ The Deformable Wheel Robot Using Magic-Ball Origami Structure,” ASME Paper No. DETC2013-13016.
Onal, C. D. , Wood, R. J. , and Rus, D. , 2011, “ Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 4608–4613.
Miyashita, S. , Guitron, S. , Ludersdorfer, M. , Sung, C. R. , and Rus, D. , 2015, “ An Untethered Miniature Origami Robot That Self-Folds, Walks, Swims, and Degrades,” IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, May 26–30, pp. 1490–1496.
Miyashita, S. , Guitron, S. , Yoshida, K. , Li, S. , Damian, D. D. , and Rus, D. , 2016, “ Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds,” IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21, pp. 909–916.
Miura, K. , and Natori, M. , 1985, “ 2-D Array Experiment on Board a Space Flyer Unit,” Space Sol. Power Rev., 5, pp. 345–356.
Miura, K. , 2009, “ The Science of Miura-Ori: A Review,” Origami4, R. J. Lang , ed., A K Peters, Natick, MA, pp. 87–100. [CrossRef]
Miura, K. , 1994, “ Map Fold a La Miura Style, Its Physical Characteristics and Application to the Space Science,” Research of Pattern Formation, KTK Scientific Publishers, Tokyo, Japan, pp. 77–90.
Nishiyama, Y. , 2012, “ Miura Folding: Applying Origami to Space Exploration,” Int. J. Pure Appl. Math., 79(2), pp. 269–279.
Natori, M. C. , Katsumata, N. , Yamakawa, H. , Sakamoto, H. , and Kishimoto, N. , 2014, “ Conceptual Model Study Using Origami for Membrane Space Structures,” ASME Paper No. DETC2013-13490.
Zirbel, S. A. , Lang, R. J. , Thomson, M. W. , Sigel, D. A. , Walkemeyer, P. E. , Trease, B. P. , Magleby, S. P. , and Howell, L. L. , 2013, “ Accommodating Thickness in Origami-Based Deployable Arrays,” ASME J. Mech. Des., 135(11), p. 111005. [CrossRef]
Zirbel, S. A. , Wilson, M. E. , Magleby, S. P. , and Howell, L. L. , 2013, “ An Origami-Inspired Self-Deployable Array,” ASME Paper No. SMASIS2013-3296.
Wilson, L. , Pellegrino, S. , and Danner, R. , 2013, “ Origami Sunshield Concepts for Space Telescopes,” AIAA Paper No. 2013-1594.
Morgan, J. , Magleby, S. P. , and Howell, L. L. , 2016, “ An Approach to Designing Origami-Adapted Aerospace Mechanisms,” ASME J. Mech. Des., 138(5), p. 052301. [CrossRef]
Liu, Y. , Boyles, J. K. , Genzer, J. , and Dickey, M. D. , 2012, “ Self-Folding of Polymer Sheets Using Local Light Absorption,” Soft Matter, 8(6), pp. 1764–1769. [CrossRef]
Martinez, R. V. , Fish, C. R. , Chen, X. , and Whitesides, G. M. , 2012, “ Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators,” Adv. Funct. Mater., 22(7), pp. 1376–1384. [CrossRef]
Francis, K. , Blanch, J. , Magleby, S. , and Howell, L. , 2013, “ Origami-Like Creases in Sheet Materials for Compliant Mechanism Design,” Mech. Sci., 4(2), pp. 371–380. [CrossRef]
Schenk, M. , Allwood, J. , and Guest, S. , 2011, “ Cold Gas-Pressure Folding of Miura-Ori Sheets,” International Conference on Technology of Plasticity (ICTP 2011), Aachen, Germany, Sept. 25–30, pp. 25–30.
Song, Z. , Lv, C. , Liang, M. , Sanphuang, V. , Wu, K. , Chen, B. , Zhao, Z. , Bai, J. , Wang, X. , Volakis, J. L. , Wang, L. , He, X. , Yao, Y. , Tongay, S. , and Jiang, H. , 2016, “ Microscale Silicon Origami,” Small, 12(39), pp. 5401–5406.
Cho, J.-H. , Keung, M. D. , Verellen, N. , Lagae, L. , Moshchalkov, V. V. , Van Dorpe, P. , and Gracias, D. H. , 2011, “ Nanoscale Origami for 3D Optics,” Small, 7(14), pp. 1943–1948. [CrossRef] [PubMed]
Cavallo, F. , and Lagally, M. G. , 2015, “ Nano-Origami: Art and Function,” Nano Today, 10(5), pp. 538–541. [CrossRef]
Buri, H. , and Weinand, Y. , 2008, “ Origamifolded Plate Structures, Architecture,” Tenth World Conference on Timber Engineering (WCTE), Miyazaki, Japan, June 2–5, pp. 2–5.
Bateman, A. , 2002, “ Computer Tools and Algorithms for Origami Tessellation Design,” Origami3, T. Hull , ed., A K Peters, Natick, MA, pp. 121–127. [CrossRef]
Demaine, E. D. , and O'Rourke, J. , 2007, Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, Cambridge, UK. [CrossRef]
Lang, R. J. , 1994, “ Mathematical Algorithms for Origami Design,” Symmetry: Cult. Sci., 5(2), pp. 115–152.
Lang, R. J. , 1996, “ A Computational Algorithm for Origami Design,” 12th ACM Symposium on Computational Geometry, Philadelphia, PA, May 24–26, pp. 98–105.
Tachi, T. , 2009, “ 3D Origami Design Based on Tucking Molecules,” Origami4, R. J. Lang , ed., A K Peters, Natick, MA, pp. 259–272. [CrossRef]
Demaine, E. D. , Demaine, M. L. , Koschitz, D. , and Tachi, T. , 2011, “ Curved Crease Folding: A Review on Art, Design and Mathematics,” IABSE-IASS Symposium, London, Sept. 20–23, pp. 20–23.
Demaine, E. D. , Demaine, M. L. , Huffman, D. A. , Koschitz, D. , and Tachi, T. , 2016, “ Characterization of Curved Creases and Rulings: Design and Analysis of Lens Tessellations,” Origami6, K. Miura , T. Kawasaki , T. Tachi , R. Uehara , R. J. Lang , and P. Wang-Iverson , eds., American Mathematical Society, Providence, RI, pp. 209–230. [CrossRef]
Epps, G. , and Verma, S. , 2013, “ Curved Folding: Design to Fabrication Process of Robofold,” Shape Modeling International, Bournemouth, UK, July 10–13, pp. 75–83.
Fuchs, D. , and Tabachnikov, S. , 1999, “ More on Paperfolding,” Am. Math. Mon., 106(1), pp. 27–35. [CrossRef]
Huffman, D. A. , 1976, “ Curvature and Creases: A Primer on Paper,” IEEE Trans. Comput., C-25(10), pp. 1010–1019. [CrossRef]
Leong, C. C. , 2011, “ Simulation of Nonzero Gaussian Curvature in Origami by Curved-Crease Couplets,” Origami5, A K Peters, Natick, MA, pp. 455–474. [CrossRef]
Mitani, J. , 2011, “ A Design Method for Axisymmetric Curved Origami With Triangular Prism Protrusions,” Origami5, P. Wang-Iverson , R. J. Lang , and M. Yim , eds., A K Peters, Natick, MA, pp. 437–447.
Mosely, J. , 2009, “ Surface Transitions in Curved Origami,” Origami4, R. J. Lang , ed., A K Peters, Natick, MA, pp. 143–150. [CrossRef]
Tachi, T. , 2013, “ Composite Rigid-Foldable Curved Origami Structure,” First Conference Transformables, Seville, Spain, Sept. 18–20, pp. 18–20.
Peraza-Hernandez, E. A. , Hartl, D. J. , Lagoudas, D. C. , 2016, “ Kinematics of Origami Structures With Smooth Folds,” ASME J. Mech. Rob., 8(6), p. 061019. [CrossRef]
Lang, R. J. , 1990, Origami Zoo, St. Martin's Griffin, New York.
Lang, R. J. , 2003, Origami Design Secrets: Mathematical Methods for an Ancient Art, A K Peters, Natick, MA. [CrossRef]
Tachi, T. , 2010, “ Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh,” Advances in Architectural Geometry 2010, Springer-Verlag, Berlin, pp. 87–102.
Gattas, J. M. , and You, Z. , 2013, “ Quasi-Static Impact Response of Alternative Origami-Core Sandwich Panels,” ASME Paper No. DETC2013-12681.
Xie, R. , Chen, Y. , and Gattas, J. M. , 2015, “ Parametrisation and Application of Cube and Eggbox-Type Folded Geometries,” Int. J. Space Struct., 30(2), pp. 99–110. [CrossRef]
Tachi, T. , 2009, “ One-DOF Cylindrical Deployable Structures With Rigid Quadrilateral Panels,” 50th Symposium of the International Association for Shell and Spatial Structures (IASS), Valencia, Spain. Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Universitat Politècnica de València, Spain, Sept. 28–Oct. 2, pp. 2295–2305.
Miura, K. , and Tachi, T. , 2010, “ Synthesis of Rigid-Foldable Cylindrical Polyhedra,” Eighth Congress and Exhibition of the International Society for the Interdisciplinary Study of Symmetry, Gmünd, Austria, Aug. 23–28, pp. 204–213.
Filipov, E. T. , Paulino, G. H. , and Tachi, T. , 2016, “ Origami Tubes With Reconfigurable Polygonal Cross-Sections,” Proc. R. Soc. A, 472(2185), pp. 1–23.
Filipov, E. T. , Tachi, T. , and Paulino, G. H. , 2015, “ Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials,” Proc. Natl. Acad. Sci., 112(40), pp. 12321–12326. [CrossRef]
Liu, S. , Lv, W. , Chen, Y. , and Lu, G. , 2016, “ Deployable Prismatic Structures With Rigid Origami Patterns,” ASME J. Mech. Rob., 8(3), p. 031002. [CrossRef]
Hoberman, C. , 1988, “ Reversibly Expandable Three-Dimensional Structure,” U.S. Patent No. 4,780,344.
Gattas, J. M. , and You, Z. , 2015, “ Geometric Assembly of Rigid-Foldable Morphing Sandwich Structures,” Eng. Struct., 94, pp. 149–159. [CrossRef]
Schenk, M. , Guest, S. , and McShane, G. , 2014, “ Novel Stacked Folded Cores for Blast-Resistant Sandwich Beams,” Int. J. Solids Struct., 51(25–26), pp. 4196–4214.
Kawasaki, T. , 2011, “ A Note on Operations of Spherical Origami Constructions,” Origami5, P. Wang-Iverson , R. J. Lang , and M. Yim , eds., A K Peters, Natick, MA, pp. 553–574. [CrossRef]
Alperin, R. , 2011, “ Origami Alignments and Constructions in the Hyperbolic Plane,” Origami5, P. Wang-Iverson , R. J. Lang , and M. Yim , eds., A K Peters, Natick, MA, pp. 553–574. [CrossRef]
Alperin, R. C. , Hayes, B. , and Lang, R. J. , 2011, “ Folding the Hyperbolic Crane,” Math. Intell., 34(2), pp. 38–49. [CrossRef]
Kawasaki, T. , and Yoshida, M. , 1989, “ Crystallographic Flat Origamis,” First International Meeting of Origami Science and Technology, Ferrara, Italy, Dec. 6–7, pp. 223–228.
Demaine, E. D. , 2000, “ Folding and Unfolding Linkages, Paper, and Polyhedra,” Japanese Conference on Discrete and Computational Geometry (JCDCG), Tokyo, Japan, Nov. 22–25, pp. 113–124.
Bowen, L. A. , Grames, C. L. , Magleby, S. P. , Howell, L. L. , and Lang, R. J. , 2013, “ A Classification of Action Origami as Systems of Spherical Mechanisms,” ASME J. Mech. Des., 135(11), p. 111008. [CrossRef]
Hrubec, M. C. , 1981, “ Unitary Furniture Element,” U.S. Patent No. 4,293,965.
Hoberman, C. , 1990, “ Reversibly Expandable Doubly-Curved Truss Structure,” U.S. Patent No. 4,942,700.
Hoberman, C. , 1991, “ Radial Expansion/Retraction Truss Structures,” U.S. Patent No. 5,024,031.
Tachi, T. , 2009, “ Generalization of Rigid Foldable Quadrilateral Mesh Origami,” 50th Symposium of the International Association for Shell and Spatial Structures, Valencia, Spain (IASS). Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, Universitat Politècnica de València, Spain, Sept. 28–Oct. 2, pp. 2287–2294.
Tachi, T. , 2010, “ Geometric Considerations for the Design of Rigid Origami Structures,” International Association for Shell and Spatial Structures (IASS) Symposium, Shanghai, China, Nov. 8–12, pp. 458–460.
Tachi, T. , 2016, “ Rigid Folding of Periodic Origami Tessellations,” Origami6, K. Miura , T. Kawasaki , T. Tachi , R. Uehara , R. J. Lang , and P. Wang-Iverson , eds., CRC Press, Boca Raton, FL, pp. 97–108. [CrossRef]
Saito, K. , Tsukahara, A. , and Okabe, Y. , 2016, “ Designing of Self-Deploying Origami Structures Using Geometrically Misaligned Crease Patterns,” Proc. R. Soc. A, 472(2185), p. 20150235.
Evans, T. A. , Lang, R. J. , Magleby, S. P. , and Howell, L. L. , 2015, “ Rigidly Foldable Origami Gadgets and Tessellations,” R. Soc. Open Sci., 2(9), p. 150067. [CrossRef] [PubMed]
Jianguo, C. , Xiaowei, D. , Ya, Z. , Jian, F. , and Yongming, T. , 2015, “ Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern,” ASME J. Mech. Des., 137(6), p. 061406. [CrossRef]
Jianguo, C. , Xiaowei, D. , Yuting, Z. , Jian, F. , and Ya, Z. , 2016, “ Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern,” ASME J. Mech. Rob., 8(3), p. 031004. [CrossRef]
Yellowhorse, A. , and Howell, L. L. , 2016, “ A Pseudo-Rigid-Body Model for Compliant Edge Panels in Origami-Inspired Mechanisms,” ASME Paper No. DETC2016-59297.
Norton, R. L. , 2004, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines, McGraw-Hill Professional, New York.
Erdman, A. G. , and Sandor, G. N. , 1997, Mechanism Design: Analysis and Synthesis, Vol. 1, Prentice Hall, Upper Saddle River, NJ.
Uicker, J. J. , Pennock, G. R. , and Shigley, J. E. , 2011, Theory of Machines and Mechanisms, Vol. 1, Oxford University Press, New York.
Suh, C. H. , and Radcliffe, C. W. , 1978, Kinematics and Mechanisms Design, Wiley, Hoboken, NJ.
McCarthy, J. M. , 1990, Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA.
McCarthy, J. M. , 2006, Geometric Design of Linkages, Vol. 11, Springer Science & Business Media, Berlin.
Kawasaki, T. , 1989, “ On the Relation Between Mountain-Creases and Valley-Creases of a Flat Origami,” First International Meeting of Origami Science and Technology, Ferrara, Italy, Dec. 6–7, p. 229237.
Justin, J. , 1986, Mathematics of Origami—Part 9, British Origami Society, London, pp. 28–30.
Justin, J. , 1989, “ Aspects mathematiques du pliage de papier,” First International Meeting of Origami Science and Technology, Ferrara, Italy, Dec. 6–7, pp. 263–277.
Justin, J. , 1997, “ Towards a Mathematical Theory of Origami,” Origami Science and Art: Second International Meeting of Origami Science and Scientific Origami, Otsu, Japan, Nov. 29–Dec. 2, pp. 15–30.
Hull, T. , 1994, “ On the Mathematics of Flat Origamis,” Congr. Numerantium, 100, pp. 215–224.
Lang, R. J. , Magleby, S. , and Howell, L. L. , 2016, “ Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers,” ASME J. Mech. Rob., 8(3), p. 031005. [CrossRef]
Evans, T. A. , Lang, R. J. , Magleby, S. P. , and Howell, L. L. , 2015, “ Rigidly Foldable Origami Twists,” Origami 6, American Mathematical Society, Providence, RI, pp. 119–130. [CrossRef]
belcastro, S.-M. , and Hull, T. C. , 2002, “ Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations,” Linear Algebra Appl., 348(1–3), pp. 273–282. [CrossRef]
Abel, Z. , Cantarella, J. , Demaine, E. D. , Eppstein, D. , Hull, T. C. , Ku, J. , Lang, R. J. , and Tachi, T. , 2016, “ Rigid Origami Vertices: Conditions and Forcing Sets,” J. Comput. Geom., 7(1), pp. 171–184.
Tachi, T. , 2011, “ Rigid-Foldable Thick Origami,” Origami5, CRC Press, Boca Raton, FL, pp. 253–264. [CrossRef]
Lang, R. J. , Nelson, T. G. , Magleby, S. P. , and Howell, L. L. , 2016, “ Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements,” ASME Paper No. DETC2016-59747.
Edmondson, B. J. , Lang, R. J. , Magleby, S. P. , and Howell, L. L. , 2014, “ An Offset Panel Technique for Thick Rigidly Foldable Origami,” ASME Paper No. DETC2014-35606.
Edmondson, B. J. , Lang, R. J. , Morgan, M. R. , Magleby, S. P. , and Howell, L. L. , 2016, “ Thick Rigidly Foldable Structures Realized by an Offset Panel Technique,” Origami6, K. Miura , T. Kawasaki , T. Tachi , R. Uehara , R. J. Lang , and P. Wang-Iverson , eds., American Mathematical Society, Providence, RI, pp. 149–161. [CrossRef]
Morgan, M. R. , Lang, R. J. , Magleby, S. P. , and Howell, L. L. , 2016, “ Towards Developing Product Applications of Thick Origami Using the Offset Panel Technique,” Mech. Sci., 7(1), p. 69. [CrossRef]
Lewis, T. S. , 1858, “ Folding-Bench,” U.S. Patent No. 22,371.
Nellis, G. , 1866, “ Improved Folding Table,” U.S. Patent No. 58,462.
Sulzbacheb, M. , 1869, “ Improved Folding Mattress,” U.S. Patent No. 92,396.
Hoberman, C. , 2010, “Folding Structures Made of Thick Hinged Sheets,” U.S. Patent No. 7,794,019.
Yoshimura, Y. , 1951, “ On the Mechanism of a Circular Cylindrical Shell Under Axial Compression,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. NACA-TM-1390.
Gattas, J. M. , Wu, W. , and You, Z. , 2013, “ Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries,” ASME J. Mech. Des., 135(11), p. 111011. [CrossRef]
Trautz, M. , and Künstler, A. , 2009, “ Deployable Folded Plate Structures—Folding Patterns Based on 4-Fold-Mechanism Using Stiff Plates,” IASS Symposium 2009, Valencia, Spain, Sept. 28–Oct. 2, pp. 2306–2317.
Trautz, M. , and Buffart, H. , 2013, “ Construction Approach for Deployable Folded Plate Structures Without Transversal Joint Displacement,” First Conference Transformables, p. 2013.
De Temmerman, N. , Mollaert, M. , Van Mele, T. , Beaumesnil, B. , and De Laet, L. , 2006, “ Development of a Foldable Mobile Shelter System,” International Conference on Adaptable Building Structures (Adaptables 2006), Eindhoven, The Netherlands, July 3–5, pp. 13–17.
Chen, Y. , Peng, R. , and You, Z. , 2015, “ Origami of Thick Panels,” Science, 349(6246), pp. 396–400. [CrossRef] [PubMed]
You, Z. , and Chen, Y. , 2012, Motion Structures: Deployable Structural Assemblies of Mechanisms, Spon Press, New York.
Bennett, G. , 1903, “ A New Mechanism,” Engineering, 76(12), pp. 777–778.
Beggs, J. S. , 1966, Advanced Mechanism, Macmillan, Basingstoke, UK.
Myard, F. , 1931, “ Contribution à la géométrie des systèmes articulés,” Bull. Soc. Math. France, 59, pp. 183–210. [CrossRef]
Bricard, R. , 1927, Leçons de Cinématique (Cinématique Appliquée, Vol. II), Gauthier-Villars, Paris, France.
Chen, Y. , Feng, H. , Ma, J. , Peng, R. , and You, Z. , 2016, “ Symmetric Waterbomb Origami,” Proc. R. Soc. A, 472(2190), p. 20150846.
Hoberman, C. , 1991, “ Reversibly Expandable Structure,” U.S. Patent No. 4,981,732.
Ku, J. S. , and Demaine, E. D. , 2016, “ Folding Flat Crease Patterns With Thick Materials,” ASME J. Mech. Rob., 8(3), p. 031003. [CrossRef]
Ku, J. S. , and Demaine, E. D. , 2016, “ Rigid Folding Analysis of Offset Crease Thick Folding,” IASS Annual Symposium on Spatial Structures in the 21st Century, Tokyo, Japan, Sept. 26–30, Paper No. 1431.
Scientific American, 1889, “ Jacob's Ladder,” Scientific American, p. 227.
Hillberry, B. M. , and Hall , A. S., Jr. , 1976, “ Rolling Contact Prosthetic Knee Joint,” U.S. Patent No. 3,945,053.
Halverson, P. A. , Bowden, A. E. , and Howell, L. L. , 2012, “ A Compliant Mechanism Approach to Achieving Specific Quality of Motion in a Lumbar Total Disc Replacement,” Int. J. Spine Surg., 6(1), pp. 78–86. [CrossRef] [PubMed]
Collins, C. L. , 2003, “ Kinematics of Robot Fingers With Circular Rolling Contact Joints,” J. Rob. Syst., 20(6), pp. 285–296. [CrossRef]
Cannon, J. R. , and Howell, L. L. , 2005, “ A Compliant Contact-Aided Revolute Joint,” Mech. Mach. Theory, 40(11), pp. 1273–1293. [CrossRef]
Halverson, P. A. , Howell, L. L. , and Magleby, S. P. , 2010, “ Tension-Based Multi-Stable Compliant Rolling-Contact Elements,” Mech. Mach. Theory, 45(2), pp. 147–156. [CrossRef]
Cai, J. , 2016, “ Kinematic Analysis of Foldable Plate Structures With Rolling Joints,” ASME J. Mech. Rob., 8(3), p. 034502. [CrossRef]
Pehrson, N. A. , Magleby, S. P. , Lang, R. J. , and Howell, L. L. , 2016, “ Introduction of Monolithic Origami With Thick-Sheet Materials,” International Annual Symposium on Association for Shell and Spatial Structures, Tokyo, Japan, Sept. 26–30, Paper No. 1116.
Delimont, I. L. , Magleby, S. P. , and Howell, L. L. , 2015, “ A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds,” ASME J. Mech. Des., 137(9), p. 092302. [CrossRef]
Durney, M. W. , 2002, “ Method for Precision Bending of a Sheet of Material and Slit Sheet Therefor,” U.S. Patent No. 6,481,259.
Howell, L. L. , 2001, Compliant Mechanisms, Wiley, Hoboken, NJ.
Howell, L. L. , Magleby, S. P. , and Olsen, B. M. , eds., 2013, Handbook of Compliant Mechanisms, Wiley, Hoboken, NJ. [CrossRef]
Delimont, I. L. , Magleby, S. P. , and Howell, L. L. , 2015, “ Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms,” ASME J. Mech. Rob., 7(1), p. 011009. [CrossRef]
Sessions, J. , Pehrson, N. , Tolman, K. , Erickson, J. , Fullwood, D. , Howell, L. L. , 2016, “ A Material Selection and Design Method for Multi-Constraint Compliant Mechanisms,” ASME Paper No. DETC2016-59582.

Figures

Grahic Jump Location
Fig. 1

Schematic of a D4V. Sector angles α1α4 are angles between consecutive folds with fold angles γ1γ4. Left: the crease pattern. Right: the folded form.

Grahic Jump Location
Fig. 2

Tapered panels technique applied to the Miura-ori pattern

Grahic Jump Location
Fig. 3

Tapered panels technique

Grahic Jump Location
Fig. 4

Diagram detailing the length of a panel's taper

Grahic Jump Location
Fig. 5

Offset panel technique

Grahic Jump Location
Fig. 6

A single offset panel vertex

Grahic Jump Location
Fig. 7

Hinge shift technique

Grahic Jump Location
Fig. 8

Thick folding vertex demonstrated by Hoberman for the Miura-ori pattern

Grahic Jump Location
Fig. 9

Photos of a thickened rigidly foldable arc pattern prototype created using symmetric D4V shown moving from flat to folded

Grahic Jump Location
Fig. 18

Prototype of thick vertex utilizing SORCE technique demonstrated by Lang et al.

Grahic Jump Location
Fig. 19

Membrane technique

Grahic Jump Location
Fig. 17

Rolling contacts technique (SORCE implementation)

Grahic Jump Location
Fig. 16

Offset crease implementation of the doubled hinge technique demonstrated for a single D4V

Grahic Jump Location
Fig. 15

Doubled hinge technique (offset crease implementation)

Grahic Jump Location
Fig. 14

Generalized thick folding vertex demonstrated by Chen et al.

Grahic Jump Location
Fig. 13

A thick rigidly foldable square twist developed using the generalized hinge shift technique of Chen et al.

Grahic Jump Location
Fig. 12

Photos of a thick folding Yoshimura pattern prototype comprised of symmetric degree 6 vertices

Grahic Jump Location
Fig. 11

Thick folding vertex demonstrated by De Temmerman for the Yoshimura pattern

Grahic Jump Location
Fig. 10

Sliding hinge approach demonstrated by Trautz et al.

Grahic Jump Location
Fig. 20

Strained joint technique

Grahic Jump Location
Fig. 21

Strained joint technique applied to a D4V

Grahic Jump Location
Fig. 22

Implementation of the doubled hinge technique where the vertex is only split along the primary fold axis

Grahic Jump Location
Fig. 23

Rolling contact/doubled hinge composite vertex where traditional hinges are used together with rolling contact joints

Grahic Jump Location
Fig. 24

Prototype of rolling contact/doubled hinge composite vertex

Grahic Jump Location
Fig. 25

Offset panel/hinge shift hybrid

Grahic Jump Location
Fig. 31

Hybrid mechanism where the right vertex utilizes the offset panel technique and the left vertex utilizes the doubled hinge technique

Grahic Jump Location
Fig. 32

Doubled hinge/hinge shift hybrid mechanism

Grahic Jump Location
Fig. 26

Pattern consisting of two D4V

Grahic Jump Location
Fig. 27

Offset panel/hinge shift hybrid mechanism

Grahic Jump Location
Fig. 28

Yoshimura pattern created using offset panel/hinge shift hybrid technique shown deployed and folded

Grahic Jump Location
Fig. 29

Bird-base pattern created using offset panel/hinge shift hybrid technique

Grahic Jump Location
Fig. 30

Two vertex pattern where the left vertex has the crease doubled

Tables

Errata

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In