0
Discussion

Discussion of “Geometric Algorithms for Robot Dynamics: A Tutorial Review” (F. C. Park, B. Kim, C. Jang, and J. Hong, 2018, ASME Appl. Mech. Rev., 70(1), p. 010803)

[+] Author and Article Information
Gregory S. Chirikjian

Professor
Fellow ASME
Department of Mechanical Engineering,
Johns Hopkins University,
Baltimore, MD 21218
e-mail: gchirik1@jhu.edu

Manuscript received January 4, 2018; final manuscript received January 12, 2018; published online February 14, 2018. Editor: Harry Dankowicz.

Appl. Mech. Rev 70(1), 015502 (Feb 14, 2018) (5 pages) Paper No: AMR-18-1002; doi: 10.1115/1.4039080 History: Received January 04, 2018; Revised January 12, 2018

Lie-theoretic methods provide an elegant way to formulate many problems in robotics, and the tutorial by Park et al. (2018, “Geometric Algorithms for Robot Dynamics: A Tutorial Review,” ASME Appl. Mech. Rev., 70(1), p. 010803) is simultaneously a complete and concise introduction to these methods as they pertain to robot dynamics. The central reason why Lie groups are a natural mathematical tool for robotics is that rigid-body motions and pose changes can be described as Lie groups, and allow phenomena including robot kinematics and dynamics to be formulated in elegant notation without introducing superfluous coordinates. The emphasis of the tutorial by Park et al. (2018, “Geometric Algorithms for Robot Dynamics: A Tutorial Review,” ASME Appl. Mech. Rev., 70(1), p. 010803) is robot dynamics from a Lie-theoretic point of view. Newton–Euler and Lagrangian formulation of robot dynamics algorithms with O(n) complexity were formulated more than 35 years ago using recurrence relations that use the serial structure of manipulator arms. This was done without using the knowledge of Lie theory. But issues such as why the ω× terms in rigid-body dynamics appear can be more easily understood in the context of this theory. The authors take great efforts to be understandable by nonexperts and present extensive references to the differential-geometric and Lie-group-centric formulations of manipulator dynamics. In the discussion presented here, connections are made to complementary methods that have been developed in other bodies of literature. This includes the multibody dynamics, geometric mechanics, spacecraft dynamics, and polymer physics literature, as well as robotics works that present non-Lie-theoretic formulations in the context of highly parallelizable algorithms.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Karger, A. , and Novák, J. , 1985, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York.
Absil, P.-A. , Mahony, R. , and Sepulchre, R. , 2008, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ. [CrossRef]
Walker, I. D. , Choset, H. , and Chirikjian, G. S. , 2016, “ Snake-Like and Continuum Robots,” Springer Handbook of Robotics, Springer, New York, pp. 481–498. [CrossRef]
Park, F. C. , Kim, B. Y. , Jang, C. J. , and Hong, J. S. , 2018, “ Geometric Algorithms for Robot Dynamics: A Tutorial Review,” ASME Appl. Mech. Rev., 70(1), p. 010803. [CrossRef]
Luh, J. Y. S. , Walker, M. W. , and Paul, R. P. , 1980, “ On-Line Computational Scheme for Mechanical Manipulators,” ASME J. Dyn. Sys. Meas. Control, 102(2), pp. 69–76. [CrossRef]
Featherstone, R. , 1983, “ The Calculation of Robot Dynamics Using Articulated-Body Inertia,” Int. J. Robot. Res., 2(1), pp. 13–30. [CrossRef]
Chirikjian, G. S. , and Kyatkin, A. B. , 2016, Harmonic Analysis for Engineers and Applied Scientists, Dover, Mineola, NY.
Chirikjian, G. S. , 2011, Stochastic Models, Information Theory, and Lie Groups: Volume 2—Analytic Methods and Modern Applications, Birkhäuser, Boston, MA.
Park, F. C. , 1994, “ Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics,” IEEE Trans. Autom. Control, 39(3), pp. 643–647. [CrossRef]
Chen, G. , Wang, H. , and Lin, Z. , 2014, “ Determination of Identifiable Parameters in Robot Calibration Based on the POE Formula,” IEEE Trans. Rob., 30(5), pp. 1066–1077. [CrossRef]
Hollerbach, J. M. , 1980, “ A Recursive Lagrangian Formulation of Manipulator Dynamics and a Comparative Study of Dynamics Formulation Complexity,” IEEE Trans. Syst., Man, Cybern., 10(11), pp. 730–736. [CrossRef]
Book, W. J. , 1984, “ A Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” Int. J. Rob. Res., 3(3), pp. 87–101. [CrossRef]
Naudet, J. , 2005, “ Forward Dynamics of Multibody Systems: A Recursive Hamiltonian Approach,” Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium. https://cris.vub.be/en/studentthesis/forward-dynamics-of-multibody-system-a-recursive-hamiltonian-approach(57b4ed07-9664-402f-8424-e37e872d6c8e).html
Mohan, A. , and Saha, S. K. , 2007, “ A Recursive, Numerically Stable, and Efficient Simulation Algorithm for Serial Robots,” Multibody Syst. Dyn., 17(4), pp. 291–319. [CrossRef]
Jain, A. , 1991, “ Unified Formulation of Dynamics for Serial Rigid Multibody Systems,” J. Guid. Control Dyn., 14(3), pp. 531–542. [CrossRef]
Rodriguez, G. , 1987, “ Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and Inverse Dynamics,” IEEE J. Robot. Automat., RA, 3(6), pp. 624–639. [CrossRef]
Rodriguez, G. , and Keutz-Delgado, K. , 1992, “ Spatial Operator Factorization and Inversion of the Manipulator Mass Matrix,” IEEE Trans. Robot. Automat., 8(1), pp. 65–76. [CrossRef]
Saha, S. K. , 1997, “ A Decomposition of the Manipulator Inertia Matrix,” IEEE Trans. Rob. Autom., 13(2), pp. 301–304. [CrossRef]
Saha, S. K. , 1999, “ Analytical Expression for the Inverted Inertia Matrix of Serial Robots,” Int. J. Rob. Res., 18(1), pp. 116–124.
Angeles, J. , and Ma, O. , 1998, “ Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement,” Int. J. Robot. Res., 7(5), pp. 32–47. [CrossRef]
Sovinsky, M. C. , Hurtado, J. E. , Griffith, D. T. , and Turner, J. D. , 2007, “ The Hamel Representation: A Diagonalized Poincaré Form,” ASME J. Comput. Nonlinear Dyn., 2(4), pp. 316–323. [CrossRef]
Junkins, J. L. , and Schaub, H. , 1997, “ An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics,” J. Astronaut. Sci., 45(3), pp. 279–295. http://dnc.tamu.edu/drjunkins/yearwise/1997/Archival/JAS_45_3_1997_instantaneous.pdf
Bedrossian, N. S. , 1992, “ Linearizing Coordinate Transformations and Riemann Curvature,” 31st IEEE Conference on Decision and Control (CDC), Tucson, AZ, Dec. 16–18, pp. 80–85.
Loduha, T. A. , and Ravani, B. , 1995, “ On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems,” ASME J. Appl. Mech., 62(1), pp. 216–216. [CrossRef]
Melhem, K. , and Wang, W. , 2009, “ Global Output Tracking Control of Flexible Joint Robots Via Factorization of the Manipulator Mass Matrix,” IEEE Trans. Rob., 25(2), pp. 428–437. [CrossRef]
Herman, P. , and Kozłowski, K. , 2006, “ A Survey of Equations of Motion in Terms of Inertial Quasi-Velocities for Serial Manipulators,” Arch. Appl. Mech., 76(9–10), pp. 579–614. [CrossRef]
Hamel, G. , 1967, Theoretische Mechanik: Eine Einheitliche Einführung in Die Gesamte Mechanik, Vol. 57, Springer-Verlag, New York.
Kane, T. R. , and Levinson, D. A. , 1985, Dynamics, Theory and Applications, McGraw-Hill, New York.
Gibbs, J. W. , 1879, “ On the Fundamental Formulae of Dynamics,” Am. J. Math., 2(1), pp. 49–64. [CrossRef]
Huston, R. L. , 1987, “ On the Equivalence of Kane's Equations and Gibbs' Equations for Multibody Dynamics Formulations,” Mech. Res. Commun., 14(2), pp. 123–131. [CrossRef]
Desloge, E. A. , 1987, “ Relationship Between Kane's Equations and the Gibbs–Appell Equations,” J. Guid. Control Dyn., 10(1), pp. 120–122. [CrossRef]
Keat, J. E. , 1987, “ Comment on ‘Relationship Between Kane’s Equations and the Gibbs-Appell Equations,” J. Guid. Control, Dyn., 10(6), pp. 594–595. [CrossRef]
Hooker, W. W. , and Margulies, G. , 1965, “ The Dynamical Attitude Equations for an n-Body Satellite’,” J. Astronaut. Sci., 7(4), pp. 123–128.
Vereshchagin, A. F. , 1975, “ Gauss Principle of Least Constraint for Modeling the Dynamics of Automatic Manipulators Using a Digital Computer,” Sov. Phys. Doklady, 20(1), pp. 33–34.
Fixman, M. , 1974, “ Classical Statistical Mechanics of Constraints: A Theorem and Application to Polmers,” Proc. Nat. Acad. Sci. U.S.A., 71(8), pp. 3050–3053. [CrossRef]
Wittenburg, J. , 2010, Dynamics of Multibody Systems, Springer, New York.
Roberson, R. E. , and Schwertassek, R. , 2012, Dynamics of Multibody Systems, Springer, New York.
Shabana, A. A. , 2013, Dynamics of Multibody Systems, 4th ed., Cambridge University Press, New York. [CrossRef]
Lee, K. , Wang, Y. , and Chirikjian, G. S. , 2007, “ O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains Using Lie Derivatives,” Robotica, 25(6), pp. 739–750. [CrossRef] [PubMed]
Müller, A. , and Maisser, P. , 2003, “ A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics,” Multibody Syst. Dyn., 9(4), pp. 311–352. [CrossRef]
Müller, A. , and Terze, Z. , 2014, “ The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems,” Mech. Mach. Theory, 82, pp. 173–202. [CrossRef]
Naudet, J. , Lafeber, D. , and Terze, Z. , 2003, “ General Formulation of an Efficient Recursive Algorithm Based on Canonical Momenta for Forward Dynamics of Open-Loop Multibody Systems,” Multibody Dyn., 10(1), pp. 45–59. http://mech.vub.ac.be/multibody/publications/full_texts/ECCOMAS_2003_Naudet.pdf
Walker, M. W. , and Orin, D. E. , 1982, “ Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst., Meas., Control, 104(3), pp. 205–211. [CrossRef]
Armstrong, W. W. , 1979, “ Recursive Solution to the Equations of Motion of an N-Link Manipulator,” Fifth World Congress on the Theory of Machines and Mechanisms, Montreal, QC, Canada, July 8–13, pp. 1342–1346.
Jain, A. , and Rodriguez, G. , 1992, “ Recursive Flexible Multibody System Dynamics Using Spatial Operators,” J. Guid. Control Dyn., 15(6), pp. 1453–1466. [CrossRef]
Shabana, A. A. , 1997, “ Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn., 1(2), pp. 189–222. [CrossRef]
Anderson, K. S. , and Duan, S. , 2000, “ Parallel Implementation of a Low Order Algorithm for Dynamics of Multibody Systems on a Distributed Memory Computing System,” J. Eng. Comput., 16(2), pp. 96–108. [CrossRef]
Anderson, K. S. , 1993, “ An Order-N Formulation for the Motion Simulation of General Multi-Rigid-Body Tree Systems,” J. Comput. Struct., 46(3), pp. 547–559. [CrossRef]
Anderson, K. S. , and Critchley, J. H. , 2003, “ Improved ‘Order-N’ Performance Algorithm for the Simulation of Constrained Multirigid-Body Dynamic Systems,” Multibody Syst. Dyn., 9(2), pp. 185–212. [CrossRef]
Featherstone, R. , 1999, “ A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(Log(n)) Calculation of Rigid Body Dynamics—Part 2: Trees, Loops and Accuracy,” Int. J. Rob. Res., 18(9), pp. 876–892. [CrossRef]
Mukherjee, R. M. , and Anderson, K. S. , 2006, “ A Logarithmic Complexity Divide-and-Conquer Algorithm for Multi-Flexible Articulated Body Dynamics,” ASME J. Comput. Nonlinear Dyn., 2(1), pp. 10–21. [CrossRef]
Fijani, A. , and D'Eleuterio, G. M. T. , 1995, “ Parallel O(Log N) Algorithms for Computation of Manipulator Forward Dynamics,” IEEE Trans. Robot. Automat., 11(3), pp. 389–400. [CrossRef]
Ploen, S. R. , and Park, F. C. , 1999, “ Coordinate-Invariant Algorithms for Robot Dynamics,” IEEE Trans. Rob. Autom., 15(6), pp. 1130–1135. [CrossRef]
Chirikjian, G. S. , 1994, “ Hyper-Redundant Manipulator Dynamics: A Continuum Approximation,” Adv. Rob., 9(3), pp. 217–243. [CrossRef]
Newmark, N. N. , 1959, “ A Method of Computation for Structural Dynamics,” ASCE J. Eng. Mech. Div., 85(3), pp. 67–94. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0011858
Ortiz, M. , 1986, “ A Note on Energy Conservation and Stability of Nonlinear Timestepping Algorithms,” Comput. Struct., 24(1), pp. 167–168. [CrossRef]
Verlet, L. , 1967, “ Computer Experiments on Classical Fluids,” Phys. Rev, 159(1), pp. 98–103. [CrossRef]
Anderson, H. , 1983, “ RATTLE: A Velocity Version of the SHAKE Algorithm for Molecular Dynamics Calculations,” J. Comput. Phys., 52(1), pp. 24–34. [CrossRef]
Bobenko, A. I. , and Suris, Y. B. , 1999, “ Discrete Time Lagrangian Mechanics on Lie Groups, With an Application to the Lagrange Top,” Comm. Math. Phys, 204(1), pp. 147–188. [CrossRef]
Gonzalez, O. , 1996, “Design and Analysis of Conserving Integrators for Nonlinear Hamiltonian Systems With Symmetry,” Ph.D. thesis, Stanford University, Stanford, CA. https://searchworks.stanford.edu/view/3219326
Hairer, E. , 1994, “ Backward Analysis of Numerical Integrators and Symplectic Methods,” Ann. Numer. Math., 1, pp. 107–132. https://archive-ouverte.unige.ch/unige:12640
Budd, C. J. , and Iserles, A. , 1999, “ Geometric Integration: Numerical Solution of Differential Equations on Manifolds,” Philos. Trans. R. Soc. London Ser. A, Math. Phys. Eng. Sci., 357(1754), pp. 945–956. [CrossRef]
Iserles, A. , Munthe-Kaas, H. , and Zanna, A. , 2000, “ Lie-Group Methods,” Acta Numer., 9(0), pp. 215–365. [CrossRef]
Leimkuhler, B. , Patrick, G. , and Symplectic, I. , 1996, “ On Riemannian Manifolds,” J. Nonlin. Sci., 6(4), pp. 367–384. [CrossRef]
Wendlandt, J. M. , and Marsden, J. E. , 1997, “ Mechanical Integrators Derived From a Discrete Variational Principle,” Physica D, 106(3–4), pp. 223–246. [CrossRef]
Reich, S. , 1997, “ On Higher–Order Semi–Explicit Symplectic Partitioned Runge–Kutta Methods for Constrained Hamiltonian Systems,” Numer. Math., 76(2), pp. 231–247. [CrossRef]
Marsden, J. E. , and West, M. , 2001, “ Discrete Mechanics and Variational Integrators,” Acta Numer., 10, pp. 357–514. [CrossRef]
Kobilarov, M. B. , and Marsden, J. E. , 2011, “ Discrete Geometric Optimal Control on Lie Groups,” IEEE Trans. Rob., 27(4), pp. 641–655. [CrossRef]
Arnold, M. , Cardona, A. , and Brüls, O. , 2016, “ A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems,” Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, Springer, Cham, Switzerland, pp. 91–158. [CrossRef]

Figures

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In