Siciliano, B.
, and
Khatib, O.
, 2016, Springer Handbook of Robotics, Springer, New York.

[CrossRef]
Featherstone, R.
, 2014, Rigid Body Dynamics Algorithms, Springer, New York.

Featherstone, R.
, 1983, “The Calculation of Robot Dynamics Using Articulated-Body Inertias,” Int. J. Rob. Res., 2(1), pp. 13–30.

[CrossRef]
Arnold, V. I.
, 2013, Mathematical Methods of Classical Mechanics, Vol. 60, Springer Science & Business Media, New York.

Brockett, R. W.
, 1984, “Robotic Manipulators and the Product of Exponentials Formula,” Mathematical Theory of Networks and Systems, Springer, New York, pp. 120–129.

[CrossRef]
Murray, R. M.
,
Li, Z.
, and
Sastry, S. S.
, 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL.

Bloch, A. M.
, 2015, Nonholonomic Mechanics and Control, Vol. 24, Springer, New York.

[CrossRef]
Bullo, F.
, and
Lewis, A. D.
, 2004, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, Vol. 49, Springer Science & Business Media, New York.

Greenwood, D. T.
, 2006, Advanced Dynamics, Cambridge University Press, Cambridge, UK.

Belinfante, J. G.
, and
Kolman, B.
, 1989, A Survey of Lie Groups and Lie Algebras With Applications and Computational Methods, SIAM, Philadelphia, PA.

[CrossRef]
Boothby, W. M.
, 1986, An Introduction to Differentiable Manifolds and Riemannian Geometry, Vol. 120, Academic Press, Cambridge, MA.

Curtis, M. L.
, 2012, Matrix Groups, Springer Science & Business Media, New York.

[PubMed] [PubMed]
Chevalley, C.
, 1999, Theory of Lie Groups, Vol. 1, Princeton University Press, Princeton, NJ.

Lynch, K. M.
, and
Park, F. C.
, 2017, Modern Robotics Mechanics, Planning, and Control, Cambridge University Press, Cambridge, UK.

McCarthy, J. M.
, 1990, Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA.

Gantmacher, F. R.
, 1960, Theory of Matrices, Vol. 2, Chelsea Publishing, Hartford, VT.

Mladenova, C. D.
, 1993, “
Group-Theoretical Methods in Manipulator Kinematics and Symbolic Computations,” J. Intell. Rob. Syst., 8(1), pp. 21–34.

[CrossRef]
Rohmer, E.
,
Singh, S. P.
, and
Freese, M.
, 2013, “V-Rep: A Versatile and Scalable Robot Simulation Framework,” IEEE/RSJ International Conference on Intelligent Robots and System (IROS), Tokyo, Japan, Nov. 3–7, pp. 1321–1326.

Luh, J. Y.
,
Walker, M. W.
, and
Paul, R. P.
, 1980, “
On-Line Computational Scheme for Mechanical Manipulators,” ASME J. Dyn. Syst. Meas. Control, 102(2), pp. 69–76.

[CrossRef]
Park, F. C.
,
Bobrow, J. E.
, and
Ploen, S. R.
, 1995, “A Lie Group Formulation of Robot Dynamics,” Int. J. Rob. Res., 14(6), pp. 609–618.

[CrossRef]
Park, F.
,
Choi, J.
, and
Ploen, S.
, 1999, “Symbolic Formulation of Closed Chain Dynamics in Independent Coordinates,” Mech. Mach. Theory, 34(5), pp. 731–751.

[CrossRef]
Ploen, S. R.
, and
Park, F. C.
, 1997, “A Lie Group Formulation of the Dynamics of Cooperating Robot Systems,” Rob. Auton. Syst., 21(3), pp. 279–287.

[CrossRef]
Spong, M. W.
,
Hutchinson, S.
, and
Vidyasagar, M.
, 2006, Robot Modeling and Control, Vol. 3, Wiley, New York.

Park, F.
, and
Kim, M.
, 2000, “Lie Theory, Riemannian Geometry, and the Dynamics of Coupled Rigid Bodies,” Z. Angew. Math. Phys., 51(5), pp. 820–834.

[CrossRef]
Walker, M. W.
, and
Orin, D. E.
, 1982, “Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst. Meas. Control, 104(3), pp. 205–211.

[CrossRef]
Featherstone, R.
, and
Orin, D. E.
, 2016, Dynamics, Springer, Cham, Switzerland, pp. 37–66.

Lilly, K. W.
, and
Orin, D. E.
, 1991, “Alternate Formulations for the Manipulator Inertia Matrix,” Int. J. Rob. Res., 10(1), pp. 64–74.

[CrossRef]
Rodriguez, G.
,
Jain, A.
, and
Kreutz-Delgado, K.
, 1991, “A Spatial Operator Algebra for Manipulator Modeling and Control,” Int. J. Rob. Res., 10(4), pp. 371–381.

[CrossRef]
Rodriguez, G.
,
Jain, A.
, and
Kreutz-Delgado, K.
, 1992, “Spatial Operator Algebra for Multibody System Dynamics,” J. Astronaut. Sci., 40(1), pp. 27–50.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.9526&rep=rep1&type=pdf
Ploen, S. R.
, and
Park, F. C.
, 1999, “
Coordinate-Invariant Algorithms for Robot Dynamics,” IEEE Trans. Rob. Autom., 15(6), pp. 1130–1135.

[CrossRef]
Lathrop, R. H.
, 1985, “Parallelism in Manipulator Dynamics,” Int. J. Rob. Res., 4(2), pp. 80–102.

[CrossRef]
Featherstone, R.
, 1999, “A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics—Part 1: Basic Algorithm,” Int. J. Rob. Res., 18(9), pp. 867–875.

[CrossRef]
Yang, Y.
,
Wu, Y.
, and
Pan, J.
, 2017, “Parallel Dynamics Computation Using Prefix Sum Operations,” IEEE Rob. Autom. Lett., 2(3), pp. 1296–1303.

[CrossRef]
Moore, M.
, and
Wilhelms, J.
, 1988, “Collision Detection and Response for Computer Animation,” ACM SIGGRAPH Comput. Graphics, 22(4), pp. 289–298.

[CrossRef]
Hahn, J. K.
, 1988, “Realistic Animation of Rigid Bodies,” ACM SIGGRAPH Comput. Graphics, 22(4), pp. 299–308.

[CrossRef]
Baraff, D.
, 1989, “Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid Bodies,” ACM SIGGRAPH Comput. Graphics, 23(3), pp. 223–232.

[CrossRef]
Lee, S. H.
,
Kim, J.
,
Park, F. C.
,
Kim, M.
, and
Bobrow, J. E.
, 2005, “
Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization,” IEEE Trans. Rob., 21(4), pp. 657–667.

[CrossRef]
Wittenburg, J.
, 2013, Dynamics of Systems of Rigid Bodies, Vol. 33, Springer-Verlag, New York.

Freeman, R.
, 1985, “Kinematic and Dynamic Modeling, Analysis and Control of Robotic Mechanisms,” Ph.D. thesis, University of Florida, Gainesville, FL.

Luh, J.
, and
Zheng, Y. F.
, 1985, “Computation of Input Generalized Forces for Robots With Closed Kinematic Chain Mechanisms,” IEEE J. Rob. Autom., 1(2), pp. 95–103.

[CrossRef]
Dietmaier, P.
, 1998, “The Stewart-Gough Platform of General Geometry Can Have 40 Real Postures,” Advances in Robot Kinematics: Analysis and Control, Springer, New York, pp. 7–16.

[CrossRef]
Husty, M. L.
, 1996, “An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms,” Mech. Mach. Theory, 31(4), pp. 365–379.

Raghavan, M.
, 1993, “The Stewart Platform of General Geometry Has 40 Configurations,” ASME J. Mech. Des., 115(2), pp. 277–277.

[CrossRef]
Faugère, J. C.
, and
Lazard, D.
, 1995, “Combinatorial Classes of Parallel Manipulators,” Mech. Mach. Theory, 30(6), pp. 765–776.

[CrossRef]
Lee, T. Y.
, and
Shim, J. K.
, 2003, “Improved Dialytic Elimination Algorithm for the Forward Kinematics of the General Stewart–Gough Platform,” Mech. Mach. Theory, 38(6), pp. 563–577.

[CrossRef]
Merlet, J. P.
, 2004, “Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis,” Int. J. Rob. Res,, 23(3), pp. 221–235.

[CrossRef]
Lee, K. M.
, and
Shah, D. K.
, 1988, “Dynamic Analysis of a Three-Degrees-of-Freedom In-Parallel Actuated Manipulator,” IEEE J. Rob. Autom., 4(3), pp. 361–367.

[CrossRef]
Ma, O.
, 1991, “Mechanical Analysis of Parallel Manipulators With Simulation, Design, and Control Applications,” Ph.D. thesis, McGill University, Montreal, QC, Canada.

http://digitool.library.mcgill.ca/R/?func=dbin-jump-full&object_id=70192&local_base=GEN01-MCG02
Zanganeh, K. E.
,
Sinatra, R.
, and
Angeles, J.
, 1997, “Kinematics and Dynamics of a Six-Degree-of-Freedom Parallel Manipulator With Revolute Legs,” Robotica, 15(4), pp. 385–394.

[CrossRef]
Negrut, D.
,
Haug, E.
, and
Iancu, M.
, 1997, “Variable Step Implicit Numerical Integration of Stiff Multibody Systems,” NATO Advanced Study Institute on Computational Methods in Mechanisms, Varna, Bulgarie, June 16–28, pp. 157–166.

https://pdfs.semanticscholar.org/e016/35ec401970a6deba8f869e7a88fa13d13ed0.pdf
Haug, E.
, and
Yen, J.
, 1992, “Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning,” ASME J. Mech. Des., 114(2), pp. 296–304.

[CrossRef]
Lilly, K.
, and
Orin, D.
, 1994, “Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms,” ASME J. Dyn. Syst. Meas. Control, 116(2), pp. 223–223.

[CrossRef]
Wehage, R.
, and
Haug, E.
, 1982, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J. Mech. Des., 104(1), pp. 247–255.

[CrossRef]
Roberson, R. E.
, and
Schwertassek, R.
, 2012, Dynamics of Multibody Systems, Springer Science & Business Media, New York.

Baumgarte, J.
, 1972, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1(1), pp. 1–16.

[CrossRef]
Nakamura, Y.
, and
Ghodoussi, M.
, 1989, “Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators,” IEEE Trans. Rob. Autom., 5(3), pp. 294–302.

[CrossRef]
Park, F.
, and
Kim, J. W.
, 1999, “Singularity Analysis of Closed Kinematic Chains,” ASME J. Mech. Des., 121(1), pp. 32–38.

[CrossRef]
Park, J.
,
Haan, J.
, and
Park, F. C.
, 2007, “Convex Optimization Algorithms for Active Balancing of Humanoid Robots,” IEEE Trans. Rob., 23(4), pp. 817–822.

[CrossRef]
Collette, C.
,
Micaelli, A.
,
Andriot, C.
, and
Lemerle, P.
, 2008, “Robust Balance Optimization Control of Humanoid Robots With Multiple Non Coplanar Grasps and Frictional Contacts,” IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, May 19–23, pp. 3187–3193.

Wensing, P. M.
, and
Orin, D. E.
, 2013, “Generation of Dynamic Humanoid Behaviors Through Task-Space Control With Conic Optimization,” IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6–10, pp. 3103–3109.

Caron, S.
,
Pham, Q. C.
, and
Nakamura, Y.
, 2015, “Stability of Surface Contacts for Humanoid Robots: Closed-Form Formulae of the Contact Wrench Cone for Rectangular Support Areas,” IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, May 26–30, pp. 5107–5112.

Gilardi, G.
, and
Sharf, I.
, 2002, “Literature Survey of Contact Dynamics Modelling,” Mech. Mach. Theory, 37(10), pp. 1213–1239.

[CrossRef]
Anitescu, M.
, and
Potra, F. A.
, 1997, “Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn., 14(3), pp. 231–247.

[CrossRef]
Trinkle, J. C.
,
Pang, J. S.
,
Sudarsky, S.
, and
Lo, G.
, 1997, “On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction,” Z. Angew. Math. Mech., 77(4), pp. 267–279.

[CrossRef]
Montana, D. J.
, 1988, “The Kinematics of Contact and Grasp,” Int. J. Rob. Res., 7(3), pp. 17–32.

[CrossRef]
Lemke, C. E.
, 1965, “Bimatrix Equilibrium Points and Mathematical Programming,” Manage. Sci., 11(7), pp. 681–689.

[CrossRef]
Cottle, R. W.
, and
Dantzig, G. B.
, 1968, “Complementary Pivot Theory of Mathematical Programming,” Linear Algebra Appl., 1(1), pp. 103–125.

[CrossRef]
Murty, K. G.
, and
Yu, F. T.
, 1988, Linear Complementarity, Linear and Nonlinear Programming, Vol. 3, Heldermann Verlag, Berlin.

Cottle, R. W.
,
Pang, J. S.
, and
Stone, R. E.
, 2009, The Linear Complementarity Problem, SIAM, Philadelphia, PA.

[CrossRef]
Dwivedy, S. K.
, and
Eberhard, P.
, 2006, “Dynamic Analysis of Flexible Manipulators: A Literature Review,” Mech. Mach. Theory, 41(7), pp. 749–777.

[CrossRef]
Gasparetto, A.
, 2004, “On the Modeling of Flexible-Link Planar Mechanisms: Experimental Validation of an Accurate Dynamic Model,” ASME J. Dyn. Syst. Meas. Control, 126(2), pp. 365–375.

[CrossRef]
Yoshikawa, T.
,
Ohta, A.
, and
Kanaoka, K.
, 2001, “State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 2840–2845.

Kalra, P.
, and
Sharan, A. M.
, 1991, “Accurate Modelling of Flexible Manipulators Using Finite Element Analysis,” Mech. Mach. Theory, 26(3), pp. 299–313.

[CrossRef]
Dubowsky, S.
,
Gu, P. Y.
, and
Deck, J. F.
, 1991, “The Dynamic Analysis of Flexibility in Mobile Robotic Manipulator Systems,” VIII World Congress on the Theory of Machines and Mechanics, Prague, Czechoslavakia, Aug. 26–31, pp. 26–31.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.9388&rep=rep1&type=pdf
Naganathan, G.
, and
Soni, A. H.
, 1988, “Nonlinear Modeling of Kinematic and Flexibility Effects in Manipulator Design,” J. Mech. Trans. Autom., 110(3), pp. 243–254.

[CrossRef]
Theodore, R. J.
, and
Ghosal, A.
, 1995, “Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators,” Int. J. Rob. Res., 14(2), pp. 91–111.

[CrossRef]
Book, W. J.
, 1984, “Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” Int. J. Rob. Res., 3(3), pp. 87–101.

[CrossRef]
Siciliano, B.
, and
Book, W. J.
, 1988, “A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators,” Int. J. Rob. Res., 7(4), pp. 79–90.

[CrossRef]
Martins, J.
,
Botto, M. A.
, and
da Costa, J. S.
, 2002, “Modeling of Flexible Beams for Robotic Manipulators,” Multibody Syst. Dyn., 7(1), pp. 79–100.

[CrossRef]
Asada, H.
,
Ma, Z. D.
, and
Tokumaru, H.
, 1990, “Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control,” ASME J. Dyn. Syst. Meas. Control, 112(2), pp. 177–185.

[CrossRef]
Boyer, F.
, and
Coiffet, P.
, 1996, “Generalization of Newton-Euler Model for Flexible Manipulators,” J. Rob. Syst., 13(1), pp. 11–24.

[CrossRef]
Spong, M. W.
, 1987, “Modeling and Control of Elastic Joint Robots,” ASME J. Dyn. Syst. Meas. Control, 109(4), pp. 310–319.

[CrossRef]
Buondonno, G.
, and
De Luca, A.
, 2015, “A Recursive Newton-Euler Algorithm for Robots With Elastic Joints and Its Application to Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 28–Oct. 2, pp. 5526–5532.

Betts, J. T.
, 1998, “Survey of Numerical Methods for Trajectory Optimization,” J. Guid. Control Dyn., 21(2), pp. 193–207.

[CrossRef]
Pontryagin, L. S.
, 1987, Mathematical Theory of Optimal Processes, CRC Press, Boca Raton, FL.

Bryson, A. E.
, 1975, Applied Optimal Control: Optimization, Estimation and Control, CRC Press, Boca Raton, FL.

De Boor, C.
, 1978, A Practical Guide to Splines, Vol. 27, Springer-Verlag, New York.

[CrossRef]
Bobrow, J. E.
,
Martin, B.
,
Sohl, G.
,
Wang, E. C.
,
Park, F. C.
, and
Kim, J.
, 2001, “Optimal Robot Motions for Physical Criteria,” J. Rob. Syst., 18(12), pp. 785–795.

[CrossRef]
Martin, B. J.
, and
Bobrow, J. E.
, 1999, “
Minimum-Effort Motions for Open-Chain Manipulators With Task-Dependent End-Effector Constraints,” Int. J. Rob. Res., 18(2), pp. 213–224.

[CrossRef]
Gill, P. E.
, and
Murray, W.
, 1972, “
Quasi-Newton Methods for Unconstrained Optimization,” IMA J. Appl. Math., 9(1), pp. 91–108.

[CrossRef]
Fletcher, R.
, 2013, Practical Methods of Optimization, Wiley, Hoboken, NJ.

Sideris, A.
, and
Bobrow, J. E.
, 2005, “An Efficient Sequential Linear Quadratic Algorithm for Solving Nonlinear Optimal Control Problems,” IEEE Trans. Autom. Control, 50(12), pp. 2043–2047.

[CrossRef]
Bobrow, J. E.
,
Park, F. C.
, and
Sideris, A.
, 2006, “Progress on the Algorithmic Optimization of Robot Motion,” Fast Motions in Biomechanics and Robotics: Optimization and Feedback Control (Lecture Notes in Control and Information Sciences, Vol. 340), Springer, Berlin.

Li, W.
, and
Todorov, E.
, 2004, “Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems,” 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO), Setúbal, Portugal, Aug. 25–28, pp. 222–229.

https://homes.cs.washington.edu/~todorov/papers/LiICINCO04.pdf
Wang, C. Y.
,
Timoszyk, W. K.
, and
Bobrow, J. E.
, 2001, “Payload Maximization for Open Chained Manipulators: Finding Weightlifting Motions for a Puma 762 Robot,” IEEE Trans. Rob. Autom., 17(2), pp. 218–224.

[CrossRef]
Albro, J. V.
,
Sohl, G. A.
,
Bobrow, J. E.
, and
Park, F. C.
, 2000, “On the Computation of Optimal High-Dives,” IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, Apr. 24–28, pp. 3958–3963.

Sohl, G. A.
, and
Bobrow, J. E.
, 1999, “Optimal Motions for Underactuated Manipulators,” ASME Design Engineering Technical Conferences, Las Vegas, NV, Sept. 12–15, pp. 519–528.

Wang, C.-Y. E.
,
Bobrow, J. E.
, and
Reinkensmeyer, D. J.
, 2001, “Swinging From the Hip: Use of Dynamic Motion Optimization in the Design of Robotic Gait Rehabilitation,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 1433–1438.

Kuindersma, S.
,
Deits, R.
,
Fallon, M.
,
Valenzuela, A.
,
Dai, H.
,
Permenter, F.
,
Koolen, T.
,
Marion, P.
, and
Tedrake, R.
, 2016, “
Optimization-Based Locomotion Planning, Estimation, and Control Design for the Atlas Humanoid Robot,” Auton. Rob., 40(3), pp. 429–455.

[CrossRef]
Lo, J.
,
Huang, G.
, and
Metaxas, D.
, 2002, “Human Motion Planning Based on Recursive Dynamics and Optimal Control Techniques,” Multibody Sys. Dyn., 8(4), pp. 433–458.

[CrossRef]
Chesse, S.
, and
Bessonnet, G.
, 2001, “Optimal Dynamics of Constrained Multibody Systems. Application to Bipedal Walking Synthesis,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 2499–2505.

Goswami, A.
,
Espiau, B.
, and
Keramane, A.
, 1997, “Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws,” Auton. Rob., 4(3), pp. 273–286.

[CrossRef]
Berkemeier, M. D.
, 1998, “Modeling the Dynamics of Quadrupedal Running,” Int. J. Rob. Res., 17(9), pp. 971–985.

[CrossRef]
Fukuda, T.
, and
Saito, F.
, 1996, “Motion Control of a Brachiation Robot,” Rob. Auton. Syst., 18(1–2), pp. 83–93.

[CrossRef]
Spong, M. W.
, 1995, “The Swing Up Control Problem for the Acrobot,” IEEE Control Syst., 15(1), pp. 49–55.

[CrossRef]
Koon, W.
, and
Marsden, J.
, 1997, “Optimal Control for Holonomic and Nonholonomic Mechanical Systems With Symmetry and Lagrangian Reduction,” SIAM J. Control Optim., 35(3), pp. 901–929.

[CrossRef]
Cortes, J.
, and
Martinez, S.
, 2000, “Optimal Control for Nonholonomic Systems With Symmetry,” 39th IEEE Conference on Decision and Control (CDC), Sydney, Australia, Dec. 12–15, pp. 5216–5218.

Hussein, I. I.
, and
Bloch, A. M.
, 2008, “Optimal Control of Underactuated Nonholonomic Mechanical Systems,” IEEE Trans. Autom. Control, 53(3), pp. 668–682.

[CrossRef]
Mombaur, K.
,
Laumond, J. P.
, and
Yoshida, E.
, 2008, “An Optimal Control Model Unifying Holonomic and Nonholonomic Walking,” Eighth IEEE-RAS International Conference on Humanoid Robots (ICHR), Daejeon, South Korea, Dec. 1–3, pp. 646–653.

Ostrowski, J. P.
,
Desai, J. P.
, and
Kumar, V.
, 2000, “Optimal Gait Selection for Nonholonomic Locomotion Systems,” Int. J. Rob. Res., 19(3), pp. 225–237.

[CrossRef]
Reuter, J.
, 1998, “Mobile Robots Trajectories With Continuously Differentiable Curvature: An Optimal Control Approach,” IEEE/RSJ International Conference on Intelligence Robots and Systems (IROS), Victoria, BC, Canada, Oct. 13–17, pp. 38–43.

Duleba, I.
, and
Sasiadek, J. Z.
, 2003, “Nonholonomic Motion Planning Based on Newton Algorithm With Energy Optimization,” IEEE Trans. Control Syst. Technol., 11(3), pp. 355–363.

[CrossRef]
Korayem, M. H.
,
Nikoobin, A.
, and
Azimirad, V.
, 2009, “Maximum Load Carrying Capacity of Mobile Manipulators: Optimal Control Approach,” Robotica, 27(1), pp. 147–159.

[CrossRef]
Korayem, M. H.
,
Nazemizadeh, M.
, and
Rahimi, H. N.
, 2013, “Trajectory Optimization of Nonholonomic Mobile Manipulators Departing to a Moving Target Amidst Moving Obstacles,” Acta Mech., 224(5), pp. 995–1008.

[CrossRef]
Ge, X. S.
, and
Zhang, Q. Z.
, 2006, “Optimal Control of Nonholonomic Motion Planning for a Free-Falling Cat,” First International Conference on Innovative Computing, Information, and Control (ICICIC'06), Beijing, China, Aug. 30–Sept. 1, pp. 599–602.

Crawford, L. S.
, and
Sastry, S. S.
, 1995, “Biological Motor Control Approaches for a Planar Diver,” 34th IEEE Conference on Decision and Control (CDC), New Orleans, LA, Dec. 13–15, pp. 3881–3886.

Braun, D. J.
,
Howard, M.
, and
Vijayakumar, S.
, 2011, “Exploiting Variable Stiffness in Explosive Movement Tasks,” Robotics: Science and Systems VII, Los Angeles, CA, June 27–June 30, pp. 25–32.

http://www.roboticsproceedings.org/rss07/p04.pdf
Braun, D.
,
Howard, M.
, and
Vijayakumar, S.
, 2012, “Optimal Variable Stiffness Control: Formulation and Application to Explosive Movement Tasks,” Auton. Rob., 33(3), pp. 237–253.

[CrossRef]
Braun, D. J.
,
Petit, F.
,
Huber, F.
,
Haddadin, S.
,
Van Der Smagt, P.
,
Albu-Schäffer, A.
, and
Vijayakumar, S.
, 2013, “Robots Driven by Compliant Actuators: Optimal Control Under Actuation Constraints,” IEEE Trans. Rob., 29(5), pp. 1085–1101.

[CrossRef]
Garabini, M.
,
Passaglia, A.
,
Belo, F.
,
Salaris, P.
, and
Bicchi, A.
, 2011, “Optimality Principles in Variable Stiffness Control: The VSA Hammer,” IEEE/RSJ International Conference on Intelligence Robots and System (IROS), San Francisco, CA, Sept. 25–30, pp. 3770–3775.

Haddadin, S.
,
Weis, M.
,
Wolf, S.
, and
Albu-Schäffer, A.
, 2011, “Optimal Control for Maximizing Link Velocity of Robotic Variable Stiffness Joints,” IFAC Proc. Vol., 44(1), pp. 6863–6871.

[CrossRef]