0
Review Article

A Review of Propulsion, Power, and Control Architectures for Insect-Scale Flapping-Wing Vehicles

[+] Author and Article Information
E. Farrell Helbling

John A. Paulson School of Engineering
and Applied Sciences,
Wyss Institute for Biologically
Inspired Engineering,
Harvard University,
Cambridge, MA 02138
e-mail: ehelbling@seas.harvard.edu

Robert J. Wood

John A. Paulson School of Engineering
and Applied Sciences,
Wyss Institute for Biologically
Inspired Engineering,
Harvard University,
Cambridge, MA 02138
e-mail: rjwood@seas.harvard.edu

1Corresponding author.

Manuscript received March 19, 2017; final manuscript received December 16, 2017; published online January 18, 2018. Editor: Harry Dankowicz.

Appl. Mech. Rev 70(1), 010801 (Jan 18, 2018) (9 pages) Paper No: AMR-17-1020; doi: 10.1115/1.4038795 History: Received March 19, 2017; Revised December 16, 2017

Flying insects are able to navigate complex and highly dynamic environments, can rapidly change their flight speeds and directions, are robust to environmental disturbances, and are capable of long migratory flights. However, flying robots at similar scales have not yet demonstrated these characteristics autonomously. Recent advances in mesoscale manufacturing, novel actuation, control, and custom integrated circuit (IC) design have enabled the design of insect-scale flapping wing micro air vehicles (MAVs). However, there remain numerous constraints to component technologies—for example, scalable high-energy density power storage—that limit their functionality. This paper highlights the recent developments in the design of small-scale flapping wing MAVs, specifically discussing the various power and actuation technologies selected at various vehicle scales as well as the control architecture and avionics onboard the vehicle. We also outline the challenges associated with creating an integrated insect-scale flapping wing MAV.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gerdes, J. W. , Gupta, S. K. , and Wilkerson, S. A. , 2012, “ A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs,” ASME J. Mech. Rob., 4(2), p. 021003. [CrossRef]
Liu, H. , Ravi, S. , Kolomenskiy, D. , and Tanaka, H. , 2016, “ Biomechanics and Biomimetics in Insect-Inspired Flight Systems,” Phil. Trans. R. Soc. B, 371(1704), p. 20150390. [CrossRef]
Keennon, M. , Klingebiel, K. , and Won, H. , 2012, “Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle,” AIAA Paper No. 2012-0588.
Wood, R. J. , Finio, B. , Karpelson, M. , Ma, K. , Pérez-Arancibia, N. O. , Sreetharan, P. S. , Tanaka, H. , and Whitney, J. P. , 2012, “ Progress on Picoair Vehicles,” Int. J. Rob. Res., 31(11), pp. 1292–1302. [CrossRef]
Floreano, D. , and Wood, R. J. , 2015, “ Science, Technology and the Future of Small Autonomous Drones,” Nature, 521(7553), pp. 460–466. [CrossRef] [PubMed]
Trimmer, W. S. , 1989, “ Microrobots and Micromechanical Systems,” Sens. Actuators, 19(3), pp. 267–287. [CrossRef]
Dickinson, M. H. , Lehmann, F.-O. , and Sane, S. P. , 1999, “ Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, 284(5422), pp. 1954–1960. [CrossRef] [PubMed]
Alben, S. , and Shelley, M. , 2005, “ Coherent Locomotion as an Attracting State for a Free Flapping Body,” Proc. Natl. Acad. Sci. U.S.A., 102(32), pp. 11163–11166. [CrossRef] [PubMed]
Lentink, D. , and Dickinson, M. H. , 2009, “ Rotational Accelerations Stabilize Leading Edge Vortices on Revolving Fly Wings,” J. Exp. Biol., 212(16), pp. 2705–2719. [CrossRef] [PubMed]
Miller, L. A. , and Peskin, C. S. , 2009, “ Flexible Clap and Fling in Tiny Insect Flight,” J. Exp. Biol., 212(19), pp. 3076–3090. [CrossRef] [PubMed]
Rosen, M. H. , le Pivain, G. , Sahai, R. , Jafferis, N. T. , and Wood, R. J. , 2016, “ Development of a 3.2 g Untethered Flapping-Wing Platform for Flight Energetics and Control Experiments,” IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21, pp. 3227–3233.
Hines, L. , 2014, “Design and Control of a Flapping Flight Micro Aerial Vehicle,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA. https://www.ri.cmu.edu/publications/design-and-control-of-a-flapping-flight-micro-aerial-vehicle/
Ristroph, L. , and Childress, S. , 2014, “ Stable Hovering of a Jellyfish-like Flying Machine,” J. R. Soc. Interface, 11(92), p. 20130992. [CrossRef] [PubMed]
Weiss, R. , 2007, “Dragonfly or Insect Spy? Scientists at Work on Robobugs,” Washington Post Company, Washington, DC, accessed Dec. 28, 2017, http://www.washingtonpost.com/wp-dyn/content/article/2007/10/08/AR2007100801434.html
Colozza, A. , Michelson, R. , and Naqvi, M. , 2002, “Planetary Exploration Using Biomimetics-An Entomopter for Flight on Mars,” NASA Institute for Advanced Concepts Project, Ohio Aerospace Institute (OAI), Cleveland, OH, Report No. NAS5-98051.
Tanaka, H. , and Shimoyama, I. , 2010, “ Forward Flight of Swallowtail Butterfly With Simple Flapping Motion,” Bioinspiration Biomimetics, 5(2), p. 026003. [CrossRef] [PubMed]
Zou, Y. , Zhang, W. , and Zhang, Z. , 2016, “ Liftoff of an Electromagnetically Driven Insect-Inspired Flapping-Wing Robot,” IEEE Trans. Rob., 32(5), pp. 1285–1289. [CrossRef]
Cox, A. , Monopoli, D. , Cveticanin, D. , Goldfarb, M. , and Garcia, E. , 2002, “ The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles,” J. Intell. Mater. Syst. Struct., 13(9), pp. 611–615. [CrossRef]
Steltz, E. , Wood, R. J. , Avadhanula, S. , and Fearing, R. S. , 2005, “ Characterization of the Micromechanical Flying Insect by Optical Position Sensing,” IEEE International Conference on, Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 1252–1257.
Anderson, M. L. , 2011, “Design and Control of Flapping Wing Micro Air Vehicles,” Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH. http://www.dtic.mil/dtic/tr/fulltext/u2/a549053.pdf
Smith, G. L. , Pulskamp, J. S. , Sanchez, L. M. , Potrepka, D. M. , Proie, R. M. , Ivanov, T. G. , Rudy, R. Q. , Nothwang, W. D. , Bedair, S. S. , Meyer, C. D. , and Polcawich, R. G. , 2012, “ PZT-Based Piezoelectric MEMS Technology,” J. Am. Ceram. Soc., 95(6), pp. 1777–1792. [CrossRef]
Wood, R. , Avadhanula, S. , Sahai, R. , Steltz, E. , and Fearing, R. , 2008, “ Microrobot Design Using Fiber Reinforced Composites,” ASME J. Mech. Des., 130(5), p. 052304. [CrossRef]
Ma, K. Y. , Chirarattananon, P. , Fuller, S. B. , and Wood, R. J. , 2013, “ Controlled Flight of a Biologically Inspired, Insect-Scale Robot,” Science, 340(6132), pp. 603–607. [CrossRef] [PubMed]
Teoh, Z. E. , 2015, “Design of Hybrid Passive and Active Mechanisms for Control of Insect-Scale Flapping-Wing Robots,” Ph.D. thesis, Harvard University, Cambridge, MA. https://dash.harvard.edu/handle/1/23845481
Sreetharan, P. S. , Whitney, J. P. , Strauss, M. D. , and Wood, R. J. , 2012, “ Monolithic Fabrication of Millimeter-Scale Machines,” J. Micromech. Microeng., 22(5), p. 055027. [CrossRef]
Trimmer, W. , and Jebens, R. , 1989, “ Actuators for Micro Robots,” IEEE International Conference on Robotics and Automation (ICRA), Scottsdale, AZ, May 14–19, pp. 1547–1552.
Karpelson, M. , Wei, G.-Y. , and Wood, R. J. , 2008, “ A Review of Actuation and Power Electronics Options for Flapping-Wing Robotic Insects,” IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, May 19–23, pp. 779–786.
Hines, L. , Campolo, D. , and Sitti, M. , 2014, “ Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance,” IEEE Trans. Rob., 30(1), pp. 220–232. [CrossRef]
Baek, S. S. , Ma, K. Y. , and Fearing, R. S. , 2009, “ Efficient Resonant Drive of Flapping-Wing Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, Oct. 10–15, pp. 2854–2860.
Michelson, R. C. , and Reece, S. , 1998, “ Update on Flapping Wing Micro Air Vehicle Research-Ongoing Work to Develop a Flapping Wing, Crawling ‘Entomopter’,” 13th Bristol International RPV Conference, Bristol, UK, Mar. 30–Apr. 1, p. 11. https://www.researchgate.net/publication/237716432_UPDATE_ON_FLAPPING_WING_MICRO_AIR_VEHICLE_RESEARCH_Ongoing_work_to_Develop_a_Flapping_Wing_Crawling_Entomopter
Dudley, R. , 2002, The Biomechanics of Insect Flight: Form, Function, Evolution, Princeton University Press, Princeton, NJ.
Jafferis, N. T. , Smith, M. J. , and Wood, R. J. , 2015, “ Design and Manufacturing Rules for Maximizing the Performance of Polycrystalline Piezoelectric Bending Actuators,” Smart Mater. Struct., 24(6), p. 065023. [CrossRef]
Wood, R. , Steltz, E. , and Fearing, R. , 2005, “ Optimal Energy Density Piezoelectric Bending Actuators,” Sens. Actuators A: Phys., 119(2), pp. 476–488. [CrossRef]
Newnham, R. , Dogan, A. , Xu, Q. , Onitsuka, K. , and Yoshikawa, S. , 1993, “ Flextensional ‘Moonie’ Actuators,” IEEE Ultrasonics Symposium, Baltimore, MD, Oct. 31–Nov. 3, pp. 509–513.
York, P. , and Wood, R. , 2017, “ A Geometrically-Amplified In-Plane Piezoelectric Actuator for Mesoscale Robotic Systems,” IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29–June 3, pp. 1263–1268.
Steltz, E. , Avadhanula, S. , and Fearing, R. S. , 2007, “ High Lift Force With 275 Hz Wing Beat in MFI,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, Oct. 29–Nov. 2, pp. 3987–3992.
Doman, D. B. , Oppenheimer, M. W. , and Sigthorsson, D. O. , 2010, “ Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover,” J. Guidance, Control, Dyn., 33(3), pp. 724–739. [CrossRef]
Ramezani, A. , Chung, S.-J. , and Hutchinson, S. , 2017, “ A Biomimetic Robotic Platform to Study Flight Specializations of Bats,” Sci. Rob., 2(3), p. eaal2505.
Sahai, R. , Galloway, K. C. , and Wood, R. J. , 2013, “ Elastic Element Integration for Improved Flapping-Wing Micro Air Vehicle Performance,” IEEE Trans. Rob., 29(1), pp. 32–41. [CrossRef]
Van Breugel, F. , Regan, W. , and Lipson, H. , 2008, “ From Insects to Machines,” IEEE Rob. Autom. Mag., 15(4), pp. 68–74.
Koopmans, J. , Tijmons, S. , De Wagter, C. , and de Croon, G. , 2015, “ Passively Stable Flapping Flight From Hover to Fast Forward Through Shift in Wing Position,” Int. J. Micro Air Veh., 7(4), pp. 407–418. [CrossRef]
De Croon, G. , De Clercq, K. , Ruijsink, R. , Remes, B. , and De Wagter, C. , 2009, “ Design, Aerodynamics, and Vision-Based Control of the Delfly,” Int. J. Micro Air Veh., 1(2), pp. 71–97. [CrossRef]
Wood, R. J. , 2007, “ Liftoff of a 60 mg Flapping-Wing Mav,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, Oct. 29–Nov. 2, pp. 1889–1894.
Finio, B. M. , and Wood, R. J. , 2012, “ Open-Loop Roll, Pitch and Yaw Torques for a Robotic Bee,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 7–12, pp. 113–119.
Whitney, J. , and Wood, R. , 2010, “ Aeromechanics of Passive Rotation in Flapping Flight,” J. Fluid Mech., 660, pp. 197–220. [CrossRef]
Chen, Y. , Ma, K. , and Wood, R. J. , 2016, “ Influence of Wing Morphological and Inertial Parameters on Flapping Flight Performance,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, Oct. 9–14, pp. 2329–2336.
Whitney, J. , and Wood, R. , 2012, “ Conceptual Design of Flapping-Wing Micro Air Vehicles,” Bioinspiration Biomimetics, 7(3), p. 036001. [CrossRef] [PubMed]
Jafferis, N. T. , Lok, M. , Winey, N. , Wei, G.-Y. , and Wood, R. J. , 2016, “ Multilayer Laminated Piezoelectric Bending Actuators: Design and Manufacturing for Optimum Power Density and Efficiency,” Smart Mater. Struct., 25(5), p. 055033. [CrossRef]
Steltz, E. , Seeman, M. , Avadhanula, S. , and Fearing, R. S. , 2006, “ Power Electronics Design Choice for Piezoelectric Microrobots,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, Oct. 9–15, pp. 1322–1328.
Karpelson, M. , Wei, G.-Y. , and Wood, R. J. , 2012, “ Driving High Voltage Piezoelectric Actuators in Microrobotic Applications,” Sens. Actuators A: Phys., 176, pp. 78–89. [CrossRef]
Lok, M. , Zhang, X. , Helbling, E. F. , Wood, R. , Brooks, D. , and Wei, G.-Y. , 2015, “ A Power Electronics Unit to Drive Piezoelectric Actuators for Flying Microrobots,” IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, Sept. 28–30, pp. 1–4.
Teoh, Z. E. , and Wood, R. J. , 2014, “ A Bioinspired Approach to Torque Control in an Insect-Sized Flapping-Wing Robot,” Fifth IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, Aug. 12–15, pp. 911–917.
Dickinson, M. H. , and Tu, M. S. , 1997, “ The Function of Dipteran Flight Muscle,” Comp. Biochem. Physiol. Part A: Physiol., 116(3), pp. 223–238. [CrossRef]
Ma, K. Y. , Chirarattananon, P. , and Wood, R. J. , 2015, “ Design and Fabrication of an Insect-Scale Flying Robot for Control Autonomy,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 28–Oct. 2, pp. 1558–1564.
Oppenheimer, M. , Doman, D. , and Sigthorsson, D. , 2010, “Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions—Part I: Aerodynamic Model,” AIAA Paper No. 2010-1023.
Doman, D. , Oppenheimer, M. , and Sigthorsson, D. , 2010, “Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions—Part II: Controller,” AIAA Paper No. 2010-1024.
Gravish, N. , and Wood, R. J. , 2016, “ Anomalous Yaw Torque Generation From Passively Pitching Wings,” IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21, pp. 3282–3287.
Kumar, V. , and Michael, N. , 2012, “ Opportunities and Challenges With Autonomous Micro Aerial Vehicles,” Int. J. Rob. Res., 31(11), pp. 1279–1291. [CrossRef]
Faruque, I. , and Humbert, J. S. , 2010, “ Dipteran Insect Flight Dynamics—Part 1: Longitudinal Motion About Hover,” J. Theor. Biol., 264(2), pp. 538–552. [CrossRef] [PubMed]
Ristroph, L. , Ristroph, G. , Morozova, S. , Bergou, A. J. , Chang, S. , Guckenheimer, J. , Wang, Z. J. , and Cohen, I. , 2013, “ Active and Passive Stabilization of Body Pitch in Insect Flight,” J. R. Soc. Interface, 10(85), p. 20130237. [CrossRef] [PubMed]
Teoh, Z. E. , Fuller, S. B. , Chirarattananon, P. , Prez-Arancibia, N. , Greenberg, J. D. , and Wood, R. J. , 2012, “ A Hovering Flapping-Wing Microrobot With Altitude Control and Passive Upright Stability,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 7–12, pp. 3209–3216.
Chirarattananon, P. , Ma, K. Y. , and Wood, R. J. , 2014, “ Adaptive Control of a Millimeter-Scale Flapping-Wing Robot,” Bioinspiration Biomimetics, 9(2), p. 025004. [CrossRef] [PubMed]
Chirarattananon, P. , Ma, K. Y. , and Wood, R. J. , 2016, “ Perching With a Robotic Insect Using Adaptive Tracking Control and Iterative Learning Control,” Int. J. Rob. Res., 35(10), pp. 1185–1206. [CrossRef]
Pérez-Arancibia, N. O. , Pierre-Emile, J. D. , Ma, K. Y. , and Wood, R. J. , 2015, “ Model-Free Control of a Hovering Flapping-Wing Microrobot,” J. Intell. Rob. Syst., 77(1), pp. 95–111. [CrossRef]
Zhang, X. , Lok, M. , Tong, T. , Chaput, S. , Lee, S. K. , Reagen, B. , Lee, H. , Brooks, D. , and Wei, G.-Y. , 2015, “ A Multi-Chip System Optimized for Insect-Scale Flapping-Wing Robots,” Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, June 17–19, pp. C152–C153.
Fuller, S. B. , Helbling, E. F. , Chirarattananon, P. , and Wood, R. J. , 2014, “ Using a MEMS Gyroscope to Stabilize the Attitude of a Fly-Sized Hovering Robot,” International Micro Air Vehicle Conference and Competition (IMAV), Delft University of Technology, Delft, The Netherlands, Aug. 12–15, pp. 102–109. https://repository.tudelft.nl/islandora/object/uuid%3A8b461dac-9c6d-416c-ba55-41a38eb11602
Helbling, E. F. , Fuller, S. B. , and Wood, R. J. , 2014, “ Pitch and Yaw Control of a Robotic Insect Using an Onboard Magnetometer,” IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 5516–5522.
Fuller, S. B. , Karpelson, M. , Censi, A. , Ma, K. Y. , and Wood, R. J. , 2014, “ Controlling Free Flight of a Robotic Fly Using an Onboard Vision Sensor Inspired by Insect Ocelli,” J. R. Soc. Interface, 11(97), p. 20140281. [CrossRef] [PubMed]
Helbling, E. F. , Fuller, S. B. , and Wood, R. J. , 2017, “ Altitude Estimation and Control of an Insect-Scale Robot With an Onboard Proximity Sensor,” Robotics Research, Springer, Cham, Switzerland, pp. 57–69. [CrossRef]
Duhamel, P.-E. J. , Pérez-Arancibia, N. O. , Barrows, G. L. , and Wood, R. J. , 2013, “ Biologically Inspired Optical-Flow Sensing for Altitude Control of Flapping-Wing Microrobots,” IEEE/ASME Trans. Mechatronics, 18(2), pp. 556–568. [CrossRef]
Jafferis, N. T. , Graule, M. A. , and Wood, R. J. , 2016, “ Non-Linear Resonance Modeling and System Design Improvements for Underactuated Flapping-Wing Vehicles,” IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, May 16–21, pp. 3234–3241.
Karpelson, M. , Whitney, J. P. , Wei, G.-Y. , and Wood, R. J. , 2010, “ Energetics of Flapping-Wing Robotic Insects: Towards Autonomous Hovering Flight,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct. 18–22, pp. 1630–1637.
Wang, Y. , Liu, B. , Li, Q. , Cartmell, S. , Ferrara, S. , Deng, Z. D. , and Xiao, J. , 2015, “ Lithium and Lithium Ion Batteries for Applications in Microelectronic Devices: A Review,” J. Power Sources, 286, pp. 330–345. [CrossRef]
Ferrari, S. , Loveridge, M. , Beattie, S. D. , Jahn, M. , Dashwood, R. J. , and Bhagat, R. , 2015, “ Latest Advances in the Manufacturing of 3D Rechargeable Lithium Microbatteries,” J. Power Sources, 286, pp. 25–46. [CrossRef]
Lai, W. , Erdonmez, C. K. , Marinis, T. F. , Bjune, C. K. , Dudney, N. J. , Xu, F. , Wartena, R. , and Chiang, Y.-M. , 2010, “ Ultrahigh-Energy-Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design,” Adv. Mater., 22(20), pp. E139–E144.
Brühwiler, R. , Goldberg, B. , Doshi, N. , Ozcan, O. , Jafferis, N. , Karpelson, M. , and Wood, R. J. , 2015, “ Feedback Control of a Legged Microrobot With On-Board Sensing,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, Sept. 28–Oct. 2, pp. 5727–5733.

Figures

Grahic Jump Location
Fig. 1

Parameter definition for insect-scale flapping wing MAV

Grahic Jump Location
Fig. 2

Representative insect-scale flapping wing MAVs. Top row, traditional motor-driven vehicles: (a) aerovironment nanohummingbird (Image Courtesy of Keennon et al. [3]. Copyright 2012 by Aerovironment, Inc.), (b) Harvard Robot Moth [11], (c) CMU flapping wing MAV (Reproduced with permission from Hines [12]. Copyright 2014 by Carnegie Mellon University.), (d) Jellyfish Flyer [13]. Middle row, nontraditional motor-driven vehicles: (e) Central Intelligence Agency insectothopter [14], (f) entomopter [15], (g) Butterfly-inspired flapping wing MAV (Reproduced with permission from Tanaka and Shimoyama [16]. Copyright 2010 by IOP Publishing.), (h) Electromagnetic flapping wing MAV (Reproduced with permission from Zou et al. [17]. Copyright 2016 by IEEE.). Bottom row, Piezo-Driven vehicles: (i) Cox Piezo Flyer (Reproduced with permission from Cox et al. [18], Copyright 2002 by SAGE Publications.), (j) UC, Berkeley micromechanical flying insect [19], (k) CMU Piezo-driven flapping flight platform (Reproduced with permission from Hines [12]. Copyright 2014 by Carnegie Mellon University.), (l) AFRL Piezo-driven flapping wing MAV [20], and (m) ARMY RESEARCH Lab PiezoMEMS actuated wing design [21].

Grahic Jump Location
Fig. 3

Generations of the RoboBee. All vehicles designed and manufactured using the SCM [22] and PC-MEMS [25] processes. Each vehicle is actuated using piezoelectric bimorph cantilever actuators. (a) The “HMF,” with one power actuator and coupled transmission system, demonstrated successful takeoff but without a means for torque generation [43]. (b) The first generation RoboBee contained one power actuator and two smaller control actuators. This demonstrated successful torque generation and open-loop flight [44]. (c) The “dual actuator bee” contains two power actuators and was the first insect-scale device to achieve controlled flight [23]. (d) In an attempt to control yaw torques, the “angle of attack bee” consisted of one power and one control actuator that modulated an angle of attack bias on the wing hinge [52]. (e) The subsequent “quad actuator bee” was able to successfully control flight and heading maneuvers. (f) The “big bee” is a scaled-up version of the dual actuator bee to meet mass requirements of future onboard control electronics [54]. All scale bars are 1 cm.

Grahic Jump Location
Fig. 4

Components of the dual actuator bee [23]. (1) Transmission, (2) wing hinge, (3) wing, (4) actuator, (5) reflective marker for motion capture tracking, and (6) leg. All remaining components are part of the robot's airframe.

Grahic Jump Location
Fig. 5

Electrical components of the RoboBee. Left: optic flow sensor, gyroscope. Right: “brain” IC, “power” IC, DC–DC converter discrete components.

Grahic Jump Location
Fig. 6

Control and power schematic of an autonomous RoboBee. The IMU and vision sensors measure the vehicle's state and communicate with the brain IC. The brain IC has a dedicated accelerator to read the pixels from the vision sensor and use optic flow algorithms to determine the vehicle's velocity. This measurement is then used to compute the vehicle's state using another dedicated accelerator. The flight controller takes the vehicle's state and computes the necessary torques. An actuator controller uses these torques to modify the pulse signals to control the power IC and boost converter. The drive signals are sent to the RoboBee. Power will first be supplied through a low voltage tether to be replaced with a battery in the future.

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In