0
Review Article

A Review of In Situ Mechanical Characterization of Polymer Nanocomposites: Prospect and Challenges

[+] Author and Article Information
Samit Roy

Professor
Department of Aerospace Engineering and
Mechanics,
University of Alabama,
Tuscaloosa, AL 35487-0280

John Ryan, Samantha Webster

Air Force Research Laboratory,
Wright-Patterson Air Force Base, OH 45433-7750

Dhriti Nepal

Air Force Research Laboratory,
Wright-Patterson Air Force Base, OH 45433-7750
e-mail: dhriti.nepal.1@us.af.mil

1Corresponding author.

Manuscript received January 17, 2017; final manuscript received October 19, 2017; published online November 15, 2017. Editor: Harry Dankowicz.

Appl. Mech. Rev 69(5), 050802 (Nov 15, 2017) (18 pages) Paper No: AMR-17-1005; doi: 10.1115/1.4038257 History: Received January 17, 2017; Revised October 19, 2017

Mechanics at the nanoscale is radically different from mechanics at the macroscale. Atomistic simulations have revealed this important fact, and experiments are being performed to support it. Specifically, in situ testing is being performed by researchers using different approaches with different material systems to interrogate the material at the nanoscale and prove or disprove many of the proposed models. This paper attempts to provide a fairly comprehensive review of the in situ testing that is being performed at the nanoscale, together with a brief description of the models that in situ testing are being used to verify. This review paper intends to primarily provide a broad snapshot of in situ testing of different nanocarbon-based polymeric nanocomposite materials.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Burda, C. , Chen, X. , Narayanan, R. , and El-Sayed, M. A. , 2005, “ Chemistry and Properties of Nanocrystals of Different Shapes,” Chem. Rev., 105(4), pp. 1025–1102. [CrossRef] [PubMed]
Xu, M. , Liang, T. , Shi, M. , and Chen, H. , 2013, “ Graphene-Like Two-Dimensional Materials,” Chem. Rev., 113(5), pp. 3766–3798. [CrossRef] [PubMed]
Zhang, T. , Li, X. , and Gao, H. , 2015, “ Fracture of Graphene: A Review,” Int. J. Fract., 196(1), pp. 1–31. [CrossRef]
Sun, L. , Gibson, R. F. , Gordaninejad, F. , and Suhr, J. , 2009, “ Energy Absorption Capability of Nanocomposites: A Review,” Compos. Sci. Technol., 69(14), pp. 2392–2409. [CrossRef]
Daniels, C. , Horning, A. , Phillips, A. , Massote, D. V. P. , Liang, L. , Bullard, Z. , Sumpter, B. G. , and Meunier, V. , 2015, “ Elastic, Plastic, and Fracture Mechanisms in Graphene Materials,” J. Phys.: Condens. Matter, 27(37), p. 373002. [CrossRef] [PubMed]
Libonati, F. , and Buehler, M. J. , 2017, “ Advanced Structural Materials by Bioinspiration,” Adv. Eng. Mater., 19(5), p. 1600787. [CrossRef]
Morits, M. , Verho, T. , Sorvari, J. , Liljeström, V. , Kostiainen, M. A. , Gröschel, A. H. , and Ikkala, O. , 2017, “ Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocomposites,” Adv. Funct. Mater., 27(10), p. 1605378.
Grossman, M. , Bouville, F. , Erni, F. , Masania, K. , Libanori, R. , and Studart, A. R. , 2017, “ Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-Like Composite Materials,” Adv. Mater., 29(8), p. 1605039. [CrossRef]
Mirkhalaf, M. , Dastjerdi, A. K. , and Barthelat, F. , 2014, “ Overcoming the Brittleness of Glass Through Bio-Inspiration and Micro-Architecture,” Nat. Commun., 5, p. 3166. [CrossRef] [PubMed]
Tertuliano, O. A. , and Greer, J. R. , 2016, “ The Nanocomposite Nature of Bone Drives Its Strength and Damage Resistance,” Nat. Mater., 15(11), pp. 1195–1202. [CrossRef] [PubMed]
Winey, K. I. , and Vaia, R. A. , 2007, “ Polymer Nanocomposites,” MRS Bull., 32(4), pp. 314–322. [CrossRef]
Jia, J. , Sun, X. , Lin, X. , Shen, X. , Mai, Y.-W. , and Kim, J.-K. , 2014, “ Exceptional Electrical Conductivity and Fracture Resistance of 3D Interconnected Graphene Foam/Epoxy Composites,” ACS Nano, 8(6), pp. 5774–5783. [CrossRef] [PubMed]
Rafiee, M. A. , Rafiee, J. , Wang, Z. , Song, H. , Yu, Z.-Z. , and Koratkar, N. , 2009, “ Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, 3(12), pp. 3884–3890. [CrossRef] [PubMed]
Eremeyev, V. A. , 2016, “ On Effective Properties of Materials at the Nano- and Microscales Considering Surface Effects,” Acta Mech., 227(1), pp. 29–42. [CrossRef]
Rens, R. , Vahabi, M. , Licup, A. J. , MacKintosh, F. C. , and Sharma, A. , 2016, “ Nonlinear Mechanics of Athermal Branched Biopolymer Networks,” J. Phys. Chem. B, 120(26), pp. 5831–5841. [CrossRef] [PubMed]
Batistakis, C. , Michels, M. A. J. , and Lyulin, A. V. , 2014, “ Confinement-Induced Stiffening of Thin Elastomer Films: Linear and Nonlinear Mechanics Vs Local Dynamics,” Macromolecules, 47(14), pp. 4690–4703. [CrossRef]
Wegst, U. G. K. , Bai, H. , Eduardo Saiz, E. , Tomsia, A. P. , and Ritchie, R. O. , 2015, “ Bioinspired Structural Materials,” Nat. Mater., 14(1), pp. 23–36. [CrossRef] [PubMed]
Tapasztó, L. , Dumitrica, T. , Kim, S. J. , Nemes-Incze, P. , Hwang, C. , and Biró, L. P. , 2012, “ Breakdown of Continuum Mechanics for Nanometre-Wavelength Rippling of Graphene,” Nat. Phys., 8(10), pp. 739–742. [CrossRef]
Withers, P. J. , 2015, “ Fracture Mechanics by Three-Dimensional Crack-Tip Synchrotron X-Ray Microscopy,” Philos. Trans. R. Soc. A, 373(2036), p. 20130157.
Gibson, R. F. , 2010, “ A Review of Recent Research on Mechanics of Multifunctional Composite Materials and Structures,” Compos. Struct., 92(12), pp. 2793–2810. [CrossRef]
Sharon, E. , and Fineberg, J. , 1999, “ Confirming the Continuum Theory of Dynamic Brittle Fracture for Fast Cracks,” Nature, 397(6717), pp. 333–335. [CrossRef]
Aranson, I. S. , Kalatsky, V. A. , and Vinokur, V. M. , 2000, “ Continuum Field Description of Crack Propagation,” Phys. Rev. Lett., 85(1), pp. 118–121. [CrossRef] [PubMed]
Schatz, G. C. , 2007, “ Using Theory and Computation to Model Nanoscale Properties,” Proc. Natl. Acad. Sci., 104(17), pp. 6885–6892. [CrossRef]
Shao, C. , and Keten, S. , 2015, “ Stiffness Enhancement in Nacre-Inspired Nanocomposites Due to Nanoconfinement,” Sci. Rep., 5, p. 16452. [CrossRef] [PubMed]
Egan, P. , Sinko, R. , LeDuc, P. R. , and Keten, S. , 2015, “ The Role of Mechanics in Biological and Bio-Inspired Systems,” Nat. Commun., 6, p. 7418. [CrossRef] [PubMed]
Keten, S. , Xu, Z. , Ihle, B. , and Buehler, M. J. , 2010, “ Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of β-Sheet Crystals in Silk,” Nat. Mater., 9(4), pp. 359–367. [CrossRef] [PubMed]
Shimada, T. , Ouchi, K. , Chihara, Y. , and Kitamura, T. , 2015, “ Breakdown of Continuum Fracture Mechanics at the Nanoscale,” Sci. Rep., 5, p. 8596. [CrossRef] [PubMed]
Yin, H. , Qi, H. J. , Fan, F. , Zhu, T. , Wang, B. , and Wei, Y. , 2015, “ Griffith Criterion for Brittle Fracture in Graphene,” Nano Lett., 15(3), pp. 1918–1924. [CrossRef] [PubMed]
Huang, S. , Zhang, S. , Belytschko, T. , Terdalkar, S. S. , and Zhu, T. , 2009, “ Mechanics of Nanocrack: Fracture, Dislocation Emission, and Amorphization,” J. Mech. Phys. Solids, 57(5), pp. 840–850. [CrossRef]
Sahu, R. , and Anup, S. , 2016, “ Molecular Dynamics Study of Toughening Mechanisms in Nano-Composites as a Function of Structural Arrangement of Reinforcements,” Mater. Des., 100, pp. 132–140. [CrossRef]
Gao, H. , Ji, B. , Jager, I. L. , Arzt, E. , and Fratzl, P. , 2003, “ Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature,” Proc. Natl. Acad. Sci., 100(10), pp. 5597–5600. [CrossRef]
Mielke, S. L. , Belytschko, T. , and Schatz, G. C. , 2007, “ Nanoscale Fracture Mechanics,” Annu. Rev. Phys. Chem., 58(1), pp. 185–209. [CrossRef] [PubMed]
Tasis, D. , Tagmatarchis, N. , Bianco, A. , and Prato, M. , 2006, “ Chemistry of Carbon Nanotubes,” Chem. Rev., 106(3), pp. 1105–1136. [CrossRef] [PubMed]
Allen, M. J. , Tung, V. C. , and Kaner, R. B. , 2010, “ Honeycomb Carbon: A Review of Graphene,” Chem. Rev., 110(1), pp. 132–145. [CrossRef] [PubMed]
Basu-Dutt, S. , Minus, M. L. , Jain, R. , Nepal, D. , and Kumar, S. , 2012, “ Chemistry of Carbon Nanotubes for Everyone,” J. Chem. Educ., 89(2), pp. 221–229. [CrossRef]
Georgakilas, V. , Otyepka, M. , Bourlinos, A. B. , Chandra V., Kim, N. , Kemp, K. C. , Hobza, P. , Zboril, R. , and Kim, K. S. , 2012, “ Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications,” Chem. Rev., 112(11), pp. 6156–6214. [CrossRef] [PubMed]
Ma, P.-C. , Siddiqui, N. A. , Marom, G. , and Kim, J.-K. , 2010, “ Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review,” Composites, Part A, 41(10), pp. 1345–1367. [CrossRef]
Shtein, M. , Nadiv, R. , Lachman, N. , Wagner, H. D. , and Regev, O. , 2013, “ Fracture Behavior of Nanotube–Polymer Composites: Insights on Surface Roughness and Failure Mechanism,” Compos. Sci. Technol., 87, pp. 157–163. [CrossRef]
Wang, S. , Yang, B. , Yuan, J. , Si, Y. , and Chen, H. , 2015, “ Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a Defective Graphene: Cases of 5–8–5 Defects,” Sci. Rep., 5, p. 14957. [CrossRef] [PubMed]
Datta, D. , Nadimpalli, S. P. V. , Li, Y. , and Shenoy, V. B. , 2015, “ Effect of Crack Length and Orientation on the Mixed-Mode Fracture Behavior of Graphene,” Extreme Mech. Lett., 5, pp. 10–17. [CrossRef]
Zhang, P. , Ma, L. , Fan, F. , Zeng, Z. , Peng, C. , Loya, P. E. , Liu, Z. , Gong, Y. , Zhang, J. , Zhang, X. , Ajayan, P. M. , Zhu, T. , and Lou, J. , 2014, “ Fracture Toughness of Graphene,” Nat. Commun., 5, p. 3782. [PubMed]
Wei, X. , Mao, L. , Soler-Crespo, R. A. , Paci, J. T. , Huang, J. , Nguyen, S. T. , and Espinosa, H. D. , 2015, “ Plasticity and Ductility Graphene Oxide Through a Mechanochemically Induced Damage Tolerance Mechanism,” Nat. Commun., 6, p. 8029. [CrossRef] [PubMed]
Tanga, L.-C. , Wan, Y.-J. , Yan, D. , Pei, Y.-B. , Zhao, L. , Li, Y.-B. , Wu, L.-B. , Jiang, J.-X. , and Lai, G.-Q. , 2013, “ The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites,” Carbon, 60, pp. 16–27. [CrossRef]
Bortz, D. R. , Heras, E. G. , and Martin-Gullon, I. , 2012, “ Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites,” Macromolecules, 45(1), pp. 238–245. [CrossRef]
Chandrasekaran, S. , Sato, N. , Tölle, F. , Mülhaupt, R. , Fiedler, B. , and Schulte, K. , 2014, “ Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites,” Compos. Sci. Technol., 97, pp. 90–99. [CrossRef]
Kumar, A. , Li, S. , Roy, S. , King, J. A. , and Odegard, G. M. , 2015, “ Fracture Properties of Nanographene Reinforced EPON 862 Thermoset Polymer System,” Compos. Sci. Technol., 114, pp. 87–93. [CrossRef]
Rafiee, M. A. , Rafiee, J. , Srivastava, I. , Wang, Z. , Song, H. , Yu, Z.-Z. , and Koratkar, N. , 2010, “ Fracture and Fatigue in Graphene Nanocomposites,” Small, 6(2), pp. 179–183. [CrossRef] [PubMed]
Domun, N. , Hadavinia, H. , Zhang, T. , Sainsbury, T. , Liaghata, G. H. , and Vahid, S. , 2015, “ Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials—A Review of the Current Status,” Nanoscale, 7(23), pp. 10294–10329. [CrossRef] [PubMed]
Park, Y. T. , Qian, Y. , Chan, C. , Suh, T. , Nejhad, M. G. , Macosko, C. W. , and Stein, A. , 2015, “ Epoxy Toughening With Low Graphene Loading,” Adv. Funct. Mater., 25(4), pp. 575–585. [CrossRef]
Eksik, O. , Gao, J. , Shojaee, S. A. , Thomas, A. , Chow, P. , Bartolucci, S. F. , Lucca, D. A. , and Koratkar, N. , 2014, “ Epoxy Nanocomposites With Two-Dimensional Transition Metal Dichalcogenide Additives,” ACS Nano, 8(5), pp. 5282–5289. [CrossRef] [PubMed]
Haba, D. , Brunner, A. J. , and Pinter, G. , 2015, “ Dispersion of Fullerene-Like WS2 Nanoparticles Within Epoxy and the Resulting Fracture Mechanics,” Compos. Sci. Technol., 119, pp. 55–61. [CrossRef]
Li, X. , and Zhu, H. , 2015, “ Two-Dimensional MoS2: Properties, Preparation, and Applications,” J. Materiomics, 1(1), pp. 33–44. [CrossRef]
Legros, M. , Gianola, D. , and Motz, C. , 2010, “ Quantitative In Situ Mechanical Testing in Electron Microscopes,” MRS Bull., 35(5), pp. 354–360.
Mijović, J. , Andjelić, S. , and Kenny, J. M. , 1996, “ In Situ Real-Time Monitoring of Epoxy/Amine Kinetics by Remote Near Infrared Spectroscopy,” Polym. Adv. Technol., 7(1), pp. 1–16. [CrossRef]
Haque, M. A. , and Saif, M. T. A. , 2002, “ In-Situ Tensile Testing of Nano-Scale Specimens in SEM and TEM,” Exp. Mech., 42(1), pp. 123–128. [CrossRef]
Lagattu, F. , Bridier, F. , Villechaise, P. , and Brillaud, J. , 2006, “ In-Plane Strain Measurements on a Microscopic Scale by Coupling Digital Image Correlation and an In Situ SEM Technique,” Mater. Charact., 56(1), p. 10. [CrossRef]
Li, X. , Xu, Z.-H. , and Wang, R. , 2006, “ In Situ Observation of Nanograin Rotation and Deformation in Nacre,” Nano Lett., 6(10), pp. 2301–2304. [CrossRef] [PubMed]
Zhou, J. , Komvopoulos, K. , and Minor, A. M. , 2006, “ Nanoscale Plastic Deformation and Fracture of Polymers Studied by In Situ Nanoindentation in a Transmission Electron Microscope,” Appl. Phys. Lett., 88(18), p. 181908. [CrossRef]
Warren, O. L. , Shan, Z. , Asif, S. S. , Stach, E. A. , Morris, J. W. , and Minor, A. M. , 2007, “ In Situ Nanoindentation in the TEM,” Mater. Today, 10(4), pp. 59–60. [CrossRef]
Lang, U. , and Dual, J. , 2009, “ Microtensile Tests Using In Situ Atomic Force Microscopy,” Applied Scanning Probe Methods XII, B. Bhushan and H. Fuchs , eds., Springer, Berlin, pp. 165–182. [CrossRef]
Gianola, D. S. , Sedlmayr, A. , Mönig, R. , Volkert, C. A. , Major, R. C. , Cyrankowski, E. , Asif, S. A. S. , Warren, O. L. , and Kraft, O. , 2011, “ In Situ Nanomechanical Testing in Focused Ion Beam and Scanning Electron Microscopes,” Rev. Sci. Instrum., 82(6), p. 063901. [CrossRef] [PubMed]
Nili, H. , Kalantar-zadeh, K. , Bhaskaran, M. , and Sriram, S. , 2013, “ In Situ Nanoindentation: Probing Nanoscale Multifunctionality,” Prog. Mater. Sci., 58(1), pp. 1–29. [CrossRef]
Allison, P. G. , Moser, R. D. , Schirer, J. P. , Martens, R. L. , Jordon, J. B. , and Chandler, M. Q. , 2014, “ In-Situ Nanomechanical Studies of Deformation and Damage Mechanisms in Nanocomposites Monitored Using Scanning Electron Microscopy,” Mater. Lett., 131, pp. 313–316. [CrossRef]
Bufford, D. , Liu, Y. , Wang, J. , Wang, H. , and Zhang, X. , 2014, “ In Situ Nanoindentation Study on Plasticity and Work Hardening in Aluminium With Incoherent Twin Boundaries,” Nat. Commun., 5, p. 4864. [CrossRef] [PubMed]
Han, X. , Wang, L. , Yue, Y. , and Zhang, Z. , 2015, “ In Situ Atomic Scale Mechanical Microscopy Discovering the Atomistic Mechanisms of Plasticity in Nano-Single Crystals and Grain Rotation in Polycrystalline Metals,” Ultramicroscopy, 151, pp. 94–100. [CrossRef] [PubMed]
Ramachandramoorthy, R. , Bernal, R. , and Espinosa, H. D. , 2015, “ Pushing the Envelope of In Situ Transmission Electron Microscopy,” ACS Nano, 9(5), pp. 4675–4685. [CrossRef] [PubMed]
Wang, B. , and Haque, M. A. , 2015, “ In Situ Microstructural Control and Mechanical Testing Inside the Transmission Electron Microscope at Elevated Temperatures,” JOM, 67(8), pp. 1713–1720. [CrossRef]
Thomas, C. , Ferreiro, V. , Coulon, G. , and Seguela, R. , 2007, “ In Situ AFM Investigation of Crazing in Polybutene Spherulites Under Tensile Drawing,” Polymer, 48(20), pp. 6041–6048. [CrossRef]
Hang, F. , Lu, D. , Bailey, R. J. , Jimenez-Palomar, I. , Stachewicz, U. , Cortes-Ballesteros, B. , Davies, M. , Zech, M. , Bödefeld, C. , and Barber, A. H. , 2011, “ In Situ Tensile Testing of Nanofibers by Combining Atomic Force Microscopy and Scanning Electron Microscopy,” Nanotechnology, 22(36), p. 365708. [CrossRef] [PubMed]
Kahloun, C. , Monnet, G. , Queyreau, S. , Le, L. T. , and Franciosi, P. , 2016, “ A Comparison of Collective Dislocation Motion From Single Slip Quantitative Topographic Analysis During In-Situ AFM Room Temperature Tensile Tests on Cu and Feα Crystals,” Int. J. Plast., 84, pp. 277–298. [CrossRef]
Wang, C. , Frogley, M. D. , Cinque, G. , Liu, L. Q. , and Barber, A. H. , 2013, “ Deformation and Failure Mechanisms in Graphene Oxide Paper Using In Situ Nanomechanical Tensile Testing,” Carbon, 63, pp. 471–477. [CrossRef]
Huang, H. , and Zhao, H. , 2014, “ In Situ Nanoindentation and Scratch Testing Inside Scanning Electron Microscopes: Opportunities and Challenges,” Sci. Adv. Mater., 6(5), pp. 875–889. [CrossRef]
Deuschle, J. K. , Buerki, G. , Deuschle, H. M. , Enders, S. , Michler, J. , and Arzt, E. , 2008, “ In Situ Indentation Testing of Elastomers,” Acta Mater., 56(16), pp. 4390–4401. [CrossRef]
Zhu, Y. , and Espinosa, H. D. , 2005, “ An Electromechanical Material Testing System for In Situ Electron Microscopy and Applications,” Proc. Natl. Acad. Sci. U. S. A., 102(41), pp. 14503–14508. [CrossRef] [PubMed]
Hosseinian, E. , and Pierron, O. N. , 2013, “ Quantitative In Situ TEM Tensile Fatigue Testing on Nanocrystalline Metallic Ultrathin Films,” Nanoscale, 5(24), pp. 12532–12541. [CrossRef] [PubMed]
Wang, L. , Zhang, Z. , and Han, X. , 2013, “ In Situ Experimental Mechanics of Nanomaterials at the Atomic Scale,” NPG Asia Mater., 5, p. e40. [CrossRef]
Xu, T. , and Sun, L. , 2015, “ Dynamic In-Situ Experimentation on Nanomaterials at the Atomic Scale,” Small, 11(27), pp. 3247–3262. [CrossRef] [PubMed]
LaGrange, T., Reed, B. W., Santala, M. K., McKeown, J. T., Kulovits, A., Wiezorek, J. M., Nikolova, L., Rosei, F., Siwick, B. J., and Campbell, G. H., 2012, “ Approaches for Ultrafast Imaging of Transient Materials Processes in the Transmission Electron Microscope,” Micron, 43(11), pp. 1108–1120. [CrossRef] [PubMed]
Fan, X. , and Diao, D. , 2016, “ The Adhesion Behavior of Carbon Coating Studied by Re-Indentation During In Situ TEM Nanoindentation,” Appl. Surf. Sci., 362, pp. 49–55. [CrossRef]
Mu, M., Osswald, S., Gogotsi, Y., and Winey, K. I., 2009, “ An In Situ Raman Spectroscopy Study of Stress Transfer Between Carbon Nanotubes and Polymer,” Nanotechnology, 20(33), p. 335703. [CrossRef] [PubMed]
Humbert, S., Lame, O., Chenal, J. M., Rochas, C., and Vigier, G., 2010, “ New Insight on Initiation of Cavitation in Semicrystalline Polymers: In-Situ SAXS Measurements,” Macromolecules, 43(17), pp. 7212–7221. [CrossRef]
Declet-Perez, C. , Francis, L. F. , and Bates, F. S. , 2013, “ Cavitation in Block Copolymer Modified Epoxy Revealed by In Situ Small-Angle X-Ray Scattering,” ACS Macro Lett., 2(10), pp. 939–943. [CrossRef]
Wang, J. , and Mao, S. X. , 2016, “ Atomistic Perspective on In Situ Nanomechanics,” Extreme Mech. Lett., 8, pp. 127–139. [CrossRef]
Sumigawa, T., Shimada, T., Tanaka, S., Unno, H., Ozaki, N., Ashida, S., and Kitamura, T., 2017, “ Griffith Criterion for Nanoscale Stress Singularity in Brittle Silicon,” ACS Nano, 11(6), pp. 6271–6276.
Bufford, D. C., Stauffer, D., Mook, W. M., Syed Asif, S. A., Boyce, B. L., and Hattar, K., 2016, “ High Cycle Fatigue in the Transmission Electron Microscope,” Nano Lett., 16(8), pp. 4946–4953. [CrossRef] [PubMed]
Mayer, C., Li, N., Mara, N., and Chawla, N., 2015, “ Micromechanical and In Situ Shear Testing of Al–SiC Nanolaminate Composites in a Transmission Electron Microscope (TEM),” Mater. Sci. Eng.: A, 621, pp. 229–235. [CrossRef]
Jaya, B. N. , and Jayaram, V. , 2016, “ Fracture Testing at Small-Length Scales: From Plasticity in Si to Brittleness in Pt,” JOM, 68(1), pp. 94–108. [CrossRef]
Sumigawa, T., Shishido, T., Murakami, T., and Kitamura, T., 2010, “ Interface Crack Initiation Due to Nano-Scale Stress Concentration,” Mater. Sci. Eng.: A, 527(18–19), pp. 4796–4803.
Jo, A., Gu, G. H., Moon, H. C., Han, S. H., Oh, S. H., Park, C. G., and Kim, J. K., 2013, “ In Situ TEM Observation of Phase Transition of the Nanoscopic Patterns on Baroplastic Block Copolymer Films During Nanoindentation,” Nanoscale, 5(10), pp. 4351–4354. [CrossRef] [PubMed]
Hsiao, M. S., Jiao, Y., Vaia, R. A., and Drummy, L. F., 2016, “ Microscopic Characterization of Fracture Mechanisms in Polystyrene Grafted Nanoparticle Assemblies: The Role of Film Thickness and Grafting Density,” Microsc. Microanal., 22(Suppl. S3), pp. 1856–1857.
Williams, D. B. , and Carter, C. B. , 2009, Transmission Electron Microscopy a Textbook for Material Science, Springer, New York.
Egerton, R. F. , 2013, “ Control of Radiation Damage in the TEM,” Ultramicroscopy, 127, pp. 100–108. [CrossRef] [PubMed]
Trent, J. S. , Scheinbeim, J. I. , and Couchman, P. R. , 1983, “ Ruthenium Tetraoxide Staining of Polymers for Electron Microscopy,” Macromolecules, 16(4), pp. 589–598. [CrossRef]
Fox, T. L., Tang, S., Horton, J. M., Holdaway, H. A., Zhao, B., Zhu, L., and Stewart, P. L., 2015, “ In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography,” Langmuir, 31(31), pp. 8680–8688. [CrossRef] [PubMed]
Dong, X. H., Ni, B., Huang, M., Hsu, C. H., Chen, Z., Lin, Z., Zhang, W. B., Shi, A. C., and Cheng, S. Z., 2015, “ Chain Overcrowding Induced Phase Separation and Hierarchical Structure Formation in Fluorinated Polyhedral Oligomeric Silsesquioxane (FPOSS)-Based Giant Surfactants,” Macromolecules, 48(19), pp. 7172–7179. [CrossRef]
Goode, A. E., Porter, A. E., Kłosowski, M. M., Ryan, M. P., Heutz, S., and McComb, D. W., 2017, “ Analytical Transmission Electron Microscopy at Organic Interfaces,” Curr. Opin. Solid State Mater. Sci., 21(2), pp. 55–67. [CrossRef]
Richter, G., Hillerich, K., Gianola, D. S., Monig, R., Kraft, O., and Volkert, C. A., 2009, “ Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition,” Nano Lett., 9(8), pp. 3048–3052. [CrossRef] [PubMed]
Biery, N. , de Graef, M. , and Pollock, T. M. , 2003, “ A Method for Measuring Microstructural-Scale Strains Using a Scanning Electron Microscope: Applications to γ-Titanium Aluminides,” Metall. Mater. Trans. A, 34(10), pp. 2301–2313. [CrossRef]
Sutton, M. A., Li, N., Joy, D. C., Reynolds, A. P., and Li, X., 2007, “ Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements—Part I: SEM Imaging at Magnifications From 200 to 10,000,” Exp. Mech., 47(6), pp. 775–787. [CrossRef]
Sutton, M. A., Li, N., Garcia, D., Cornille, N., Orteu, J. J., McNeill, S. R., Schreier, H. W., Li, X., and Reynolds, A. P., 2007, “ Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements—Part II: Experimental Validation for Magnifications From 200 to 10,000,” Exp. Mech., 47(6), pp. 789–804. [CrossRef]
Clark, B. G., Gianola, D. S., Kraft, O., and Frick, C. P., 2010, “ Size Independent Shape Memory Behavior of Nickel–Titanium,” Adv. Eng. Mater., 12(8), pp. 808–815. [CrossRef]
Orso, S., Wegst, U. G., Eberl, C., and Arzt, E., 2006, “ Micrometer-Scale Tensile Testing of Biological Attachment Devices,” Adv. Mater., 18(7), pp. 874–877. [CrossRef]
Magagnosc, D. J., Ehrbar, R., Kumar, G., He, M. R., Schroers, J., and Gianola, D. S., 2013, “ Tunable Tensile Ductility in Metallic Glasses,” Sci. Rep., 3, p. 1096. [CrossRef]
Chasiotis, I. , and Knauss, W. G. , 2002, “ A New Microtensile Tester for the Study of MEMS Materials With the Aid of Atomic Force Microscopy,” Exp. Mech., 42(1), pp. 51–57. [CrossRef]
Zhong, J. , and He, D. , 2015, “ Combination of Universal Mechanical Testing Machine With Atomic Force Microscope for Materials Research,” Sci. Rep., 5, p. 12998. [CrossRef] [PubMed]
Zhong, J. , and Yan, J. , 2016, “ Seeing Is Believing: Atomic Force Microscopy Imaging for Nanomaterial Research,” RSC Adv., 6(2), pp. 1103–1121. [CrossRef]
Schreier, H. , Orteu, J.-J. , and Sutton, M. A. , 2009, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer, New York. [CrossRef]
Chu, T. C. , Ranson, W. F. , and Sutton, M. A. , 1985, “ Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Exp. Mech., 25(3), pp. 232–244. [CrossRef]
Peters, W. H. , and Ranson, W. F. , 1982, “ Digital Imaging Techniques in Experimental Stress Analysis,” Opt. Eng., 21(3), p. 213427. [CrossRef]
Bruck, H. A., McNeill, S. R., Sutton, M. A., and Peters, W. H., 1989, “ Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Exp. Mech., 29(3), pp. 261–267. [CrossRef]
Ganesan, Y., Lu, Y., Peng, C., Lu, H., Ballarini, R., and Lou, J., 2010, “ Development and Application of a Novel Microfabricated Device for the In Situ Tensile Testing of 1-D Nanomaterials,” J. Microelectromech. Syst., 19(3), pp. 675–682. [CrossRef]
Zlotnikov, I. , Zolotoyabko, E. , and Fratzl, P. , 2017, “ Nano-Scale Modulus Mapping of Biological Composite Materials: Theory and Practice,” Prog. Mater. Sci., 87, pp. 292–320. [CrossRef]
Terrones, M., Martín, O., González, M., Pozuelo, J., Serrano, B., Cabanelas, J. C., Vega-Díaz, S. M., and Baselga, J., 2011, “ Interphases in Graphene Polymer-Based Nanocomposites: Achievements and Challenges,” Adv. Mater., 23(44), pp. 5302–5310. [CrossRef] [PubMed]
Cao, L., Wang, Y., Dong, P., Vinod, S., Tijerina, J. T., Ajayan, P. M., Xu, Z., and Lou, J., 2016, “ Interphase Induced Dynamic Self-Stiffening in Graphene-Based Polydimethylsiloxane Nanocomposites,” Small, 12(27), pp. 3723–3731. [CrossRef] [PubMed]
Ciprari, D. , Jacob, K. , and Tannenbaum, R. , 2006, “ Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties,” Macromolecules, 39(19), pp. 6565–6573. [CrossRef]
Syed Asif, S. A., Wahl, K. J., Colton, R. J., and Warren, O. L., 2001, “ Quantitative Imaging of Nanoscale Mechanical Properties Using Hybrid Nanoindentation and Force Modulation,” J. Appl. Phys., 90(3), pp. 1192–1200. [CrossRef]
Cheng, X., Putz, K. W., Wood, C. D., and Brinson, L. C., 2015, “ Characterization of Local Elastic Modulus in Confined Polymer Films Via AFM Indentation,” Macromol. Rapid Commun., 36(4), pp. 391–397. [CrossRef] [PubMed]
Brune, P. F., Blackman, G. S., Diehl, T., Meth, J. S., Brill, D., Tao, Y., and Thornton, J., 2016, “ Direct Measurement of Rubber Interphase Stiffness,” Macromolecules, 49(13), pp. 4909–4922. [CrossRef]
Espinosa, H. D., Juster, A. L., Latourte, F. J., Loh, O. Y., Gregoire, D., and Zavattieri, P. D., 2011, “ Tablet-Level Origin of Toughening in Abalone Shells and Translation to Synthetic Composite Materials,” Nat. Commun., 2, p. 173. [CrossRef] [PubMed]
Vadlamani, V. K., Chalivendra, V. B., Shukla, A., and Yang, S., 2012, “ Sensing of Damage in Carbon Nanotubes and Carbon Black-Embedded Epoxy Under Tensile Loading,” Polym. Compos., 33(10), pp. 1809–1815. [CrossRef]
Erik, T. T. , and Tsu-Wei, C. , 2008, “ Real-Time In Situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks,” Nanotechnology, 19(21), p. 215713. [CrossRef] [PubMed]
Thostenson, E. T. , and Chou, T. W. , 2006, “ Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing,” Adv. Mater., 18(21), pp. 2837–2841. [CrossRef]
Liu, Z. , Zhang, J. , and Gao, B. , 2009, “ Raman Spectroscopy of Strained Single-Walled Carbon Nanotubes,” Chem. Commun., (45), pp. 6902–6918.
Ma, W., Liu, L., Yang, R., Zhang, T., Zhang, Z., Song, L., Ren, Y., Shen, J., Niu, Z., Zhou, W., and Xie, S., 2009, “ Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers,” Adv. Mater., 21(5), pp. 603–608. [CrossRef] [PubMed]
Young, R. J., Gong, L., Kinloch, I. A., Riaz, I., Jalil, R., and Novoselov, K. S., 2011, “ Strain Mapping in a Graphene Monolayer Nanocomposite,” ACS Nano, 5(4), pp. 3079–3084. [CrossRef] [PubMed]
Wang, G., Gao, E., Dai, Z., Liu, L., Xu, Z., and Zhang, Z., 2017, “ Degradation and Recovery of Graphene/Polymer Interfaces Under Cyclic Mechanical Loading,” Compos. Sci. Technol., 149(Suppl. C), pp. 220–227.
Duan, X., Son, H., Gao, B., Zhang, J., Wu, T., Samsonidze, G. G., Dresselhaus, M. S., Liu, Z., and Kong, J., 2007, “ Resonant Raman Spectroscopy of Individual Strained Single-Wall Carbon Nanotubes,” Nano Lett., 7(7), pp. 2116–2121. [CrossRef] [PubMed]
Liu, Y., Hamon, A. L., Haghi-Ashtiani, P., Reiss, T., Fan, B., He, D., and Bai, J., 2016, “ Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS,” ACS Appl. Mater. Interfaces, 8(49), pp. 34151–34158. [CrossRef] [PubMed]
Song, L., Wang, Z., Tang, X., Chen, L., Chen, P., Yuan, Q., and Li, L., 2017, “ Visualizing the Toughening Mechanism of Nanofiller With 3D X-Ray Nano-CT: Stress-Induced Phase Separation of Silica Nanofiller and Silicone Polymer Double Networks,” Macromolecules, 50(18), pp. 7249–7257. [CrossRef]
Marras, S. I., Tsimpliaraki, A., Zuburtikudis, I., and Panayiotou, C., 2009, “ Morphological, Thermal, and Mechanical Characteristics of Polymer/Layered Silicate Nanocomposites: The Role of Filler Modification Level,” Polym. Eng. Sci., 49(6), pp. 1206–1217. [CrossRef]
Marras, S. I. , Zuburtikudis, I. , and Panayiotou, C. , 2010, “ Solution Casting Versus Melt Compounding: Effect of Fabrication Route on the Structure and Thermal Behavior of Poly(l-Lactic Acid) Clay Nanocomposites,” J. Mater. Sci., 45(23), pp. 6474–6480. [CrossRef]
Shah, R. K. , Hunter, D. L. , and Paul, D. R. , 2005, “ Nanocomposites From Poly(Ethylene-Co-Methacrylic Acid) Ionomers: Effect of Surfactant Structure on Morphology and Properties,” Polymer, 46(8), pp. 2646–2662. [CrossRef]
Cheng, S.-H. , and Sun, C. T. , 2014, “ Size-Dependent Fracture Toughness of Nanoscale Structures: Crack-Tip Stress Approach in Molecular Dynamics,” J. Nanomech. Micromech., 4(4), p. A4014001. [CrossRef]
Roy, S. , and Kumar, A. , 2017, “ Effect of Particle Size on Mixed-Mode Fracture of Nanographene Reinforced Epoxy and Mode I Delamination of Its Carbon Fiber Composite,” Compos. Struct., 181, pp. 1–8. [CrossRef]
Wang, X. , Jin, J. , and Song, M. , 2013, “ An Investigation of the Mechanism of Graphene Toughening Epoxy,” Carbon, 65, pp. 324–333. [CrossRef]
Khare, R., Mielke, S. L., Paci, J. T., Zhang, S., Ballarini, R., Schatz, G. C., and Belytschko, T., 2007, “ Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets,” Phys. Rev. B, 75(7), p. 075412. [CrossRef]
Bernstein, N. , and Hess, D. W. , 2003, “ Lattice Trapping Barriers to Brittle Fracture,” Phys. Rev. Lett., 91(2), p. 025501. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Representative stress–strain curve showing a brittle failure (e.g., epoxy) and a ductile failure (e.g., nanocomposite). (b) Schematic showing intrinsic and extrinsic toughening mechanisms. The intrinsic mechanism promotes plasticity ahead of the crack tip and typically acts at the micron scale, whereas the latter shields the crack tip from local stresses, acting at larger length scales along the crack-face created behind the crack tip. (Reproduced with permission from Wegst et al. [17]. Copyright 2015 by Nature.) (c) Schematic illustrating a variety of fracture mechanics information, both qualitative and quantitative, that can be obtained by XRD. (Reproduced with permission from Withers [19]. Copyright 2015 by The Royal Society.)

Grahic Jump Location
Fig. 2

(a) Stress concentration in plate of decreasing thickness, where the plate on the far right is of critical length h*. Stress is normalized to the theoretical strength σth and the thickness of the plate is normalized to h*. (Reproduced with permission from Gao et al. [31]. Copyright 2003 by Proceedings of the National Academy of Sciences.) At large thicknesses (h/,h* = 20, 200), the fracture strength σf is significantly reduced from the theoretical strength, σth, of the material by the stress concentration at the crack tip. As the plate thickness approaches the critical thickness h* (h/h* = 1), the strength approaches the theoretical strength and the stress concentration vanishes due to a nanoscale phenomenon. (b) Critical energy release rate in a nanoscale specimen of width, W, calculated with continuum mechanics (left graph). It shows that conventional fracture mechanics breaks down below a critical singular field size. Discrete fracture mechanics (right graph) was developed by taking account of the discrete nature of interatomic bonds, and it can handle fracture even below the critical size by predicting a constant value of critical energy release rate as a function of specimen width. (Reproduced with permission from Shimada et al. [27] and Tang et al. [43]. Copyright 2015 by PubMed Central and 2013 by Elsevier.)

Grahic Jump Location
Fig. 3

(a) A comprehensive map of the dependence of fracture toughness of different types of nanoparticles/epoxy nanocomposites on particle loading. (Reproduced with permission from Domun et al. [48]. Copyright 2015 by Royal Society of Chemistry.) (b) A plot showing a compilation of results for KIC from various research groups for varying weight percentages of graphene. (Reproduced with permission from Jia et al. [12], Rafiee et al. [13], Tang et al. [43], and Bortz et al. [44], Chandrasekaran [45], and Kumar et al. [46]. Copyright 2014 by American Chemical Society, 2009 by American Chemical Society, 2013 by Elsevier, 2012 by American Chemical Society, 2014 by Elsevier, 2015 by Elsevier.) The inset figures show different failure mechanism observed on SEM images of the fracture surfaces. Left top: evidence of crack pinning in GNP sheets. (Reproduced with permission from Bortz et al. [44]. Copyright 2012 by American Chemical Society.) Left middle: examples of crack pinning failure, dotted line indicates crack propagation direction. (Reproduced with permission from Chandrasekaran et al. [45]. Copyright 2014 by Elsevier.) Left bottom: graphene platelet pull-out seen in 0.1 wt % GNP fracture surface. (Reproduced with permission from Kumar et al. [46]. Copyright 2015 by Elsevier.) Right bottom: circle showing GNP sheet in TEM, and pink square showing SEM of a 5.0 wt % GNP graphene/epoxy composite indicating epoxy-coated GNP protruding out of the fracture surface. Inset shows the wavy edge structure of the GNP. (Reproduced with permission from Rafiee et al. [13]. Copyright 2009 by American Chemical Society.) Right top: circle: SEM image of graphene form (GF), and square: GF/epoxy composites with 0.1 wt % GF. White arrow indicates crack propagation direction. (Reproduced with permission from Jia et al. [12]. Copyright 2014 by American Chemical Society.) Right middle: 0.2 wt % highly dispersed GNP/epoxy showing the crack growth direction. (Reproduced with permission from Tang et al. [43]. Copyright 2013 by Elsevier.)

Grahic Jump Location
Fig. 4

(a) Schematic showing different crack mechanism on GNP composite proposed by Chandrasekaran et al. (Reproduced with permission from Chandrasekaran et al. [45]. Copright 2014 by Elsevier.) (a) The crack either deflects or bifurcates and goes around the graphene particle when the crack front meets the surface of the graphene sheets. (b) Height difference created between crack planes as the crack continues to propagate in between intercalated graphene sheets where shearing between the graphene layers is expected to occur. (d) A crack penetration between GNP layers creating a “dimple-type” fracture surface. (b) Experimental results (SEM) of fractured surfaces showing increased roughness with the addition of GNP, (a) baseline, (b) 0.1 wt %, and (c) 0.5 wt % GNP (b) Series of 10 μm SEM images displaying fracture surfaces of (a) epoxy, (b) 0.1 wt % GNP, and (c) 0.5% GNP. (Reproduced with permission from Kumar et al. [46]. Copyright 2015 by Elsevier.) (c) Three-dimensional (3D) schematic of shear failure in matrix due to a difference in height of fracture planes.

Grahic Jump Location
Fig. 5

A series of SEM images displaying various failure mechanisms: crack pinning failure observed within an epoxy/GNP nanocomposite (left) by Chandrasekaran (Reproduced with permission from Chandrasekaran et al. [45]. Copyright 2014 by Elsevier.), by Park (Reproduced with permission from Park et al. [49]. Copyright 2015 by Wiley.) for fracture in graphene nanosheets/epoxy (center), and by Bortz (Reproduced with permission from Bortz et al. [44]. Copyright 2012 by American Chemical Society.) for fracture in graphene oxide/epoxy (right).

Grahic Jump Location
Fig. 6

In situ nano-indentation of a polymer in TEM. (a) Schematic of the testing device (left), SEM of sample fabricated with a focused ion beam (right). (b) Characteristic TEM images show the development of a deformation zone at different time. (c) A plot showing results of the polymer surface displacement (nm), indenter displacement and the deformation zone size as a function of time. (Reproduced with permission from Zhou et al. [58]. Copyright 2006 by American Institute of Physics.)

Grahic Jump Location
Fig. 7

(a) (a) SEM image showing a graphene film suspended. (b) Morphology seen by TEM on a suspended graphene sample with polymer residue (discontinuous) where the fast Fourier transform diffraction pattern is shown in the inset. (b) In situ SEM tensile testing with a microdevice (a), SEM images ((b) and (c)) showing graphene before and after tensile testing, respectively. Note focused ion beam milled central precrack in (b). (d) Engineering stress–strain plots of the precracked graphene samples. (Reproduced with permission from Zhang et al. [41]. Copyright 2014 by Nature.)

Grahic Jump Location
Fig. 8

In situ nano-indentation study of polyvinyl alcohol/clay nanocomposite. (a) SEM image showing cantilever beam and conical probe prior to the experiment, in which the appropriate sample dimensions are prepared by etching using a focused ion beam. (b) Correlation of the experimental data to crack initiation and fracture. (c) Fracture surface morphology of the tensile zone. (Reproduced with permission from Allison et al. [63]. Copyright 2014 by Elsevier.)

Grahic Jump Location
Fig. 9

(a) (a) The hierarchical structure of natural nacre (red abalone shell), (b) SEM image of natural nacre, and (c) bio-mimetic brick-and-mortar nacre composite. (b) Snapshots from in situ (three-point bending) AFM studies on the bio-mimetic nacre, showing deformation at different loads by optical microscopic image and AFM images. The results were combined to get DIC using kinematic displacement field. (Reproduced with permission from Espinosa et al. [119]. Copyright 2011 by Nature.)

Grahic Jump Location
Fig. 10

(a) Nacre material under 0% tension, with arrows indicating the direction of applied tension. (b)–(f) Differential tensile strain percentages of 1%, 2%, 3%, 4%, 5%, respectively. (g) General schematic of grain rotation within an aragonite platelet showing (a) nanograins under no mechanical stress and (b) grain rotation and biopolymer expansion under mechanical loading. (Reproduced with permission from Li et al. [57]. Copyright 2006 by American Chemical Society.)

Grahic Jump Location
Fig. 11

(a) Crack length effect at the nanoscale leading to a brittle to ductile transition. (b) Schematic of crack propagation and damage evolution in the presence of GNP, (a) at the mesoscale and (b) magnified view at the nanoscale.

Grahic Jump Location
Fig. 12

Effect of nanoparticle size on mode I fracture toughness in GO/epoxy nanocomposite as a function of filler content. (Reproduced with permission from Wang et al. [135]. Copyright 2013 by Elsevier.)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In