0
Review Article

A Review of Recent Research on the Mechanical Behavior of Lead-Free Solders

[+] Author and Article Information
Yao Yao

School of Mechanics and Civil Engineering,
Northwestern Polytechnical University,
Xi'an 710072, China
e-mail: yaoy@nwpu.edu.cn

Xu Long

School of Mechanics and Civil Engineering,
Northwestern Polytechnical University,
Xi'an 710072, China

Leon M. Keer

Department of Civil and
Environmental Engineering,
Northwestern University,
2145 Sheridan Road,
Evanston, IL 60208
e-mail: l-keer@northwestern.edu

1Corresponding authors.

Manuscript received February 16, 2017; final manuscript received July 18, 2017; published online August 16, 2017. Assoc. Editor: Rui Huang.

Appl. Mech. Rev 69(4), 040802 (Aug 16, 2017) (15 pages) Paper No: AMR-17-1013; doi: 10.1115/1.4037462 History: Received February 16, 2017; Revised July 18, 2017

Due to the restriction of lead-rich solder and the miniaturization of electronic packaging devices, lead-free solders have replaced lead-rich solders in the past decades; however, it also brings new technical problems. Reliability, fatigue, and drop resistance are of concern in the electronic industry. The paper provides a comprehensive survey of recent research on the methodologies to describe the mechanical behavior of lead-free solders. In order to understand the fundamental mechanical behavior of lead-free solders, the visco-plastic characteristics should be considered in the constitutive modeling. Under mechanical and thermal cycling, fatigue is related to the time to failure and can be predicted based on the analysis to strain, hysteresis energy, and damage accumulation. For electronic devices with potential drop impacts, drop resistance plays an essential role to assess the mechanical reliability of solder joints through experimental studies, establishing the rate-dependent material properties and proposing advanced numerical techniques to model the interconnect failure. The failure mechanisms of solder joints are complicated under coupled electrical-thermal-mechanical loadings, the increased current density can lead to electromigration around the current crowding zone. The induced void initiation and propagation have been investigated based on theoretical approaches to reveal the effects on the mechanical properties of solder joints. To elucidate the dominant mechanisms, the effects of current stressing and elevated temperature on mechanical behavior of lead-free solder have been reviewed. Potential directions for future research have been discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Osterman, M. , 2006, “ Being ‘RoHS Exempt’ in a Pb-Free World,” Capital SMTA Chapter Pb-Free Tutorial Program, College Park, MD, May 9. https://www.calce.umd.edu/lead-free/SMTAExemptMay8.pdf
EU Directive, 2010, “ Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment,” European Union, Brussels, Belgium, Report No. A7-0196/2010. http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P7-TA-2010-0431+0+DOC+XML+V0//EN
Zhang, L. , He, C. W. , Guo, Y. H. , Han, J. G. , Zhang, Y. W. , and Wang, X. Y. , 2012, “ Development of SnAg-Based Lead Free Solders in Electronics Packaging,” Microelectron. Reliab., 52(3), pp. 559–578. [CrossRef]
Kotadia, H. R. , Howes, P. D. , and Mannan, S. H. , 2014, “ A Review: On the Development of Low Melting Temperature Pb-Free Solders,” Microelectron. Reliab., 54(6–7), pp. 1253–1273. [CrossRef]
Choudhury, S. F. , and Ladani, L. , 2015, “ Effect of Intermetallic Compounds on the Thermomechanical Fatigue Life of Three-Dimensional Integrated Circuit Package Microsolder Bumps: Finite Element Analysis and Study,” ASME J. Electron. Packag., 137(4), p. 041003. [CrossRef]
Zhou, B. , Zhou, Q. , and Yun, F. E. , 2012, “ Study on Interfacial Behavior and Shear Strength of Lead-Free Micro-Interconnect Bump After SnPb Reballing,” International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), Guilin, China, Aug. 13–16, pp. 1317–1319.
Choudhury, S. F. , and Ladani, L. , 2016, “ Miniaturization of Micro-Solder Bumps and Effect of IMC, on Stress Distribution,” J. Electron. Mater., 45(7), pp. 3683–3694. [CrossRef]
Mu, D. K. , Mcdonald, S. D. , Read, J. , Huang, H. , and Nogita, K. , 2016, “ Critical Properties of Cu6Sn5 in Electronic Devices: Recent Progress and a Review,” Curr. Opin. Solid State Mater. Sci., 20(19), pp. 55–76. [CrossRef]
Cuddalorepatta, G. , and Dasgupta, A. , 2010, “ Multi-Scale Modeling of the Viscoplastic Response of As-Fabricated Microscale Pb-Free Sn3.0Ag0.5Cu Solder Interconnects,” Acta Mater., 58(18), pp. 5989–6001. [CrossRef]
Maleki, M. , Cugnoni, J. , and Botsis, J. , 2016, “ Multi-Scale Modeling of Elasto-Plastic Response of SnAgCu Lead-Free Solder Alloys at Different Ageing Conditions: Effect of Microstructure Evolution, Particle Size Effects and Interfacial Failure,” Mater. Sci. Eng. A, 661, pp. 132–144. [CrossRef]
Mukherjee, S. , Zhou, B. , Dasgupta, A. , and Bieler, T. R. , 2016, “ Multiscale Modeling of the Anisotropic Transient Creep Response of Heterogeneous Single Crystal SnAgCu Solder,” Int. J. Plast., 78, pp. 1–25. [CrossRef]
Austin, R. A. , and McDowell, D. L. , 2011, “ A Dislocation-Based Constitutive Model for Viscoplastic Deformation of FCC Metals at Very High Strain Rates,” Int. J. Plast., 27(1), pp. 1–24. [CrossRef]
McDowell, D. L. , 2008, “ Viscoplasticity of Heterogeneous Metallic Materials,” Mater. Sci. Eng. R-Rep., 62(3), pp. 67–123. [CrossRef]
He, X. , and Yao, Y. , 2017, “ A Dislocation Density Based Viscoplastic Constitutive Model for Lead Free Solder Under Drop Impact,” Int. J. Solids Struct., 120, pp. 236–244. [CrossRef]
Dorn, J. E. , 1955, “ Some Fundamental Experiments on High Temperature Creep,” J. Mech. Phys. Solids, 3(2), pp. 85–116. [CrossRef]
Garofalo, F. , 1963, “ An Empirical Relation Defining Stress Dependence of Minimum Creep Rate in Metals,” Trans. Metall. Soc. AIME, 227(2), pp. 351–365.
Amagai, M. , 1999, “ Characterization of Chip Scale Packaging Materials,” Microelectron. Reliab., 39(9), pp. 1365–1377. [CrossRef]
Chen, Z. G. , Shi, Y. W. , and Xia, Z. D. , 2004, “ Constitutive Relations on Creep for SnAgCuRE Lead-Free Solder Joints,” J. Electron. Mater., 33(9), pp. 964–971. [CrossRef]
Song, H. G. , Morris, J. W. , and Hua, F. , 2002, “ The Creep Properties of Lead-Free Solder Joints,” JOM, 54(6), pp. 30–32. [CrossRef]
Jud, P. P. , Grossmann, G. , Sennhauser, U. , and Uggowitzer, P. J. , 2005, “ Local Creep in SnAg3.8Cu0.7 Lead-Free Solder,” J. Electron. Mater., 34(9), pp. 1206–1214. [CrossRef]
Han, Y. D. , Jing, H. Y. , Nai, S. M. L. , Tan, C. M. , Wei, J. , Xu, L. Y. , and Zhang, S. R. , 2009, “ A Modified Constitutive Model for Creep of Sn–3.5Ag–0.7Cu Solder Joints,” J. Phys. D-Appl. Phys., 42(12), p. 125411. [CrossRef]
Gong, J. , Liu, C. , Conway, P. P. , and Silberschmidt, V. V. , 2006, “ Modelling of Ag3Sn Coarsening and Its Effect on Creep of Sn–Ag Eutectics,” Mater. Sci. Eng. A, 427(1–2), pp. 60–68. [CrossRef]
Darveaux, R. , and Banerji, K. , 1992, “ Constitutive Relations for Tin-Based Solder Joints,” IEEE Trans. Compon. Hybrids Manuf. Technol., 15(6), pp. 1013–1024. [CrossRef]
Lau, J. H. , and Lee, S. W. R. , 2002, “ Modeling and Analysis of 96.SSn–3.SAg Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board,” IEEE Trans. Electron. Packag. Manuf., 25(1), pp. 51–58. [CrossRef]
Lee, Y. , and Basaran, C. , 2011, “ A Creep Model for Solder Alloys,” ASME J. Electron. Packag., 133(4), p. 044501. [CrossRef]
Anand, L. , 1982, “ Constitutive-Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures,” ASME J. Eng. Mater. Technol., 104(1), pp. 12–17. [CrossRef]
Burke, C. , and Punch, J. , 2014, “ A Comparison of the Creep Behavior of Joint-Scale SAC105 and SAC305 Solder Alloys,” IEEE Trans. Compon. Packag. Manuf. Technol., 4(3), pp. 516–527. [CrossRef]
Chen, X. , Chen, G. , and Sakane, M. , 2005, “ Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free Solder Sn–3.5Ag,” IEEE Trans. Compon. Packag. Technol., 28(1), pp. 111–116. [CrossRef]
Bai, N. , Chen, X. , and Gao, H. , 2009, “ Simulation of Uniaxial Tensile Properties for Lead-Free Solders With Modified Anand Model,” Mater. Des., 30(1), pp. 122–128. [CrossRef]
Pei, M. , and Qu, J. , 2008, “ Creep and Fatigue Behavior of SnAg Solders With Lanthanum Doping,” IEEE Trans. Compon. Packag. Technol., 31(3), pp. 712–718. [CrossRef]
Qin, F. , An, T. , and Chen, N. , 2010, “ Strain Rate Effects and Rate-Dependent Constitutive Models of Lead-Based and Lead-Free Solders,” ASME J. Appl. Mech., 77(1), p. 011008. [CrossRef]
McDowell, D. L. , Miller, M. P. , and Brooks, D. C. , 1994, “ Unified Creep-Plasticity Theory for Solder Alloys. Fatigue of Electronic Materials,” ASTM, West Conshohocken, PA, Standard No. 1153.
Fu, C. Y. , McDowell, D. L. , and Ume, I. C. , 1998, “ A Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects,” ASME J. Electron. Packag., 120(1), pp. 24–34. [CrossRef]
Wang, F. , Keer, L. M. , Vaynman, S. , and Wen, S. , 2004, “ Constitutive Model and Numerical Analysis for High Lead Solders,” IEEE Trans. Compon. Packag. Technol., 27(4), pp. 718–723. [CrossRef]
Fu, C. Y. , McDowell, D. L. , and Ume, I. C. , 2002, “ Thermoplastic Finite Element Analysis of Unfilled Plated-Through Holes During Wave Soldering,” ASME J. Electron. Packag., 124(1), pp. 45–53. [CrossRef]
McDowell, D. L. , 1992, “ A Nonlinear Kinematic Hardening Theory for Cyclic Thermoplasticity and Thermoviscoplasticity,” Int. J. Plast., 8(6), pp. 695–728. [CrossRef]
Bai, N. , and Chen, X. , 2009, “ A New Unified Constitutive Model With Short- and Long-Range Back Stress for Lead-Free Solders of Sn–3Ag–0.5Cu and Sn–0.7Cu,” Int. J. Plast., 25(11), pp. 2181–2203. [CrossRef]
Wen, S. M. , Keer, L. M. , and Mavoori, H. , 2001, “ Constitutive and Damage Model for a Lead-Free Solder,” J. Electron. Mater., 30(9), pp. 1190–1196. [CrossRef]
Yao, Y. , He, X. , Keer, L. M. , and Fine, M. E. , 2015, “ A Continuum Damage Mechanics-Based Unified Creep and Plasticity Model for Solder Materials,” Acta Mater., 83, pp. 160–168. [CrossRef]
Yao, Y. , An, R. , and Long, X. , 2017, “ Effect of Electric Current on Mechanical Behaviour of Sn–Ag–Cu Solder Joints,” Eng. Fract. Mech., 171, pp. 85–97. [CrossRef]
Yao, Y. , Fine, M. E. , and Keer, L. M. , 2007, “ An Energy Approach to Predict Fatigue Crack Propagation in Metals and Alloys,” Int. J. Fract., 146(3), pp. 149–158. [CrossRef]
Yao, Y. , Fiedler, B. A. , Keer, L. M. , and Fine, M. E. , 2009, “ Fatigue Crack Propagation Behavior of Sn–Ag–Cu Solder Interconnects,” IEEE Trans. Compon. Packag. Technol., 32(2), pp. 317–324. [CrossRef]
He, X. , Yao, Y. , and Keer, L. M. , 2017, “ A Rate and Temperature Dependent Unified Creep-Plasticity Model for High Strength Steel and Solder Alloys,” Mech. Mater., 106, pp. 35–43. [CrossRef]
Yao, Y. , and Keer, L. M. , 2013, “ Cohesive Fracture Mechanics Based Numerical Analysis to BGA Packaging and Lead Free Solders Under Drop Impact,” Microelectron. Reliab., 53(4), pp. 629–637. [CrossRef]
Desai, C. S. , 2015, “ Constitutive Modeling of Materials and Contacts Using the Disturbed State Concept—Part 2: Validations at Specimen and Boundary Value Problem Levels,” Comput. Struct., 146, pp. 234–251. [CrossRef]
Bonnaud, E. L. , 2011, “ Issues on Viscoplastic Characterization of Lead-Free Solder for Drop Test Simulations,” ASME J. Electron. Packag., 133(4), p. 041013. [CrossRef]
Ohguchi, K. , Sasaki, K. , Ishibashi, M. , and Hoshino, T. , 2004, “ Plasticity-Creep Separation Method for Viscoplastic Deformation of Lead-Free Solders,” JSME Int. J., Ser. A, 47(3), pp. 371–379. [CrossRef]
Ohguchi, K. I. , Sasaki, K. , and Ishibashi, M. , 2006, “ A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys,” J. Electron. Mater., 35(1), pp. 132–139. [CrossRef]
Manson, S. S. , 1966, Thermal Stress and Low Cycle Fatigue, McGraw-Hill, New York.
Lee, W. W. , Nguyen, L. T. , and Selvaduray, G. S. , 2000, “ Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages,” Microelectron. Reliab., 40(2), pp. 231–244. [CrossRef]
Kanchanomai, C. , and Mutoh, Y. , 2004, “ Effect of Temperature on Isothermal Low Cycle Fatigue Properties of Sn–Ag Eutectic Solder,” Mater. Sci. Eng. A, 381(1–2), pp. 113–120. [CrossRef]
Andersson, C. , and Liu, J. , 2008, “ Effect of Corrosion on the Low Cycle Fatigue Behavior of Sn–4.0Ag–0.5Cu Lead-Free Solder Joints,” Int. J. Fatigue, 30(5), pp. 917–930. [CrossRef]
Tohmyoh, H. , Ishikawa, S. , Watanabe, S. , Kuroha, M. , and Nakano, Y. , 2013, “ Estimation and Visualization of the Fatigue Life of Pb-Free SAC Solder Bump Joints Under Thermal Cycling,” Microelectron. Reliab., 53(2), pp. 314–320. [CrossRef]
Kim, C.-U. , Bang, W.-H. , Xu, H. , and Lee, T.-K. , 2013, “ Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing,” JOM, 65(10), pp. 1362–1373. [CrossRef]
Kanchanomai, C. , Miyashita, Y. , Mutoh, Y. , and Mannan, S. L. , 2002, “ Low Cycle Fatigue and Fatigue Crack Growth Behaviour of Sn–Ag Eutectic Solder,” Soldering Surf. Mount Technol., 14(3), pp. 30–36. [CrossRef]
Chiou, Y. C. , Jen, Y. M. , and Huang, S. H. , 2011, “ Finite Element Based Fatigue Life Estimation of the Solder Joints With Effect of Intermetallic Compound Growth,” Microelectron. Reliab., 51(12), pp. 2319–2329. [CrossRef]
Kanda, Y. , and Kariya, Y. , 2010, “ Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint,” J. Electron. Mater., 39(2), pp. 238–245. [CrossRef]
Kanda, Y. , Kariya, Y. , and Mochizuki, Y. , 2008, “ Effect of Hold Time on Low Cycle Fatigue Life of Micro Solder Joint,” Mater. Trans., 49(7), pp. 1524–1530. [CrossRef]
McDowell, D. L. , Gall, K. , and Horstemeyer, M. F. , 2003, “ Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy,” Eng. Fract. Mech., 70(1), pp. 49–80. [CrossRef]
Zhang, Q. K. , Zou, H. F. , and Zhang, Z. F. , 2009, “ Tensile and Fatigue Behaviors of Aged Cu/Sn–4Ag Solder Joints,” J. Electron. Mater., 38(6), pp. 852–859. [CrossRef]
Morrow, J. D. , 1965, “ Cyclic Plastic Strain Energy and Fatigue of Metals,” Symposium on Internal Friction Damping in Cyclic Plasticity, Chicago, IL, June 22, pp. 45–87.
Li, X. , and Wang, Z. , 2007, “ Thermo-Fatigue Life Evaluation of SnAgCu Solder Joints in Flip Chip Assemblies,” J. Mater. Process. Technol., 183(1), pp. 6–12. [CrossRef]
Amalu, E. H. , and Ekere, N. N. , 2012, “ High-Temperature Fatigue Life of Flip Chip Lead-Free Solder Joints at Varying Component Stand-Off Height,” Microelectron. Reliab., 52(12), pp. 2982–2994. [CrossRef]
Che, F. X. , and Pang, J. H. L. , 2012, “ Characterization of IMC Layer and Its Effect on Thermomechanical Fatigue Life of Sn–3.8Ag–0.7Cu Solder Joints,” J. Alloys Compd., 541, pp. 6–13. [CrossRef]
Zhu, Y. , Li, X. , Gao, R. , and Wang, C. , 2014, “ Low-Cycle Fatigue Failure Behavior and Life Evaluation of Lead-Free Solder Joint Under High Temperature,” Microelectron. Reliab., 54(12), pp. 2922–2928. [CrossRef]
Lee, J. H. , and Jeong, H. Y. , 2014, “ Fatigue Life Prediction of Solder Joints With Consideration of Frequency, Temperature and Cracking Energy Density,” Int. J. Fatigue, 61, pp. 264–270. [CrossRef]
Dauksher, W. , and Lau, J. , 2009, “ A Finite-Element-Based Solder-Joint Fatigue-Life Prediction Methodology for Sn–Ag–Cu Ball-Grid-Array Packages,” IEEE Trans. Device Mater. Reliab., 9(2), pp. 231–236. [CrossRef]
Zhu, Y. , Li, X. , Wang, C. , and Gao, R. , 2015, “ A New Creep-Fatigue Life Model of Lead-Free Solder Joint,” Microelectron. Reliab., 55(7), pp. 1097–1100. [CrossRef]
Qin, H. B. , Li, W. Y. , Zhou, M. B. , and Zhang, X. P. , 2014, “ Low Cycle Fatigue Performance of Ball Grid Array Structure Cu/Sn–3.0Ag–0.5Cu/Cu Solder Joints,” Microelectron. Reliab., 54(12), pp. 2911–2921. [CrossRef]
Yang, Q. D. , Shim, D. J. , and Spearing, S. M. , 2004, “ A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints,” Microelectron. Eng., 75(1), pp. 85–95. [CrossRef]
Erinc, M. , Assman, T. M. , Schreurs, P. J. G. , and Geers, M. G. D. , 2008, “ Fatigue Fracture of SnAgCu Solder Joints by Microstructural Modeling,” Int. J. Fract., 152(1), pp. 37–49. [CrossRef]
Erinc, M. , Schreurs, P. J. G. , and Geers, M. G. D. , 2007, “ Integrated Numerical-Experimental Analysis of Interfacial Fatigue Fracture in SnAgCu Solder Joints,” Int. J. Solids Struct., 44(17), pp. 5680–5694. [CrossRef]
Erinc, M. , Schreurs, P. J. G. , and Geers, M. G. D. , 2008, “ Intergranular Thermal Fatigue Damage Evolution in SnAgCu Lead-Free Solder,” Mech. Mater., 40(10), pp. 780–791. [CrossRef]
Sun, Z. , Benabou, L. , and Dahoo, P. R. , 2013, “ Prediction of Thermo-Mechanical Fatigue for Solder Joints in Power Electronics Modules Under Passive Temperature Cycling,” Eng. Fract. Mech., 107, pp. 48–60. [CrossRef]
Benabou, L. , Sun, Z. , and Dahoo, P. R. , 2013, “ A Thermo-Mechanical Cohesive Zone Model for Solder Joint Lifetime Prediction,” Int. J. Fatigue, 49, pp. 18–30. [CrossRef]
Shaffiar, N. M. , Yamin, A. F. M. , Loh, W. K. , and Tamin, M. N. , 2012, “ Fatigue Failure Processes in Pb-Free Solder Joints Using Continuum Damage and Cohesive Zone Models,” IEEE 14th Electronics Packaging Technology Conference (EPTC), Singapore, Dec. 5–7, pp. 456–461.
Abdul-Baqi, A. , Schreurs, P. J. G. , and Geers, M. G. D. , 2005, “ Fatigue Damage Modeling in Solder Interconnects Using a Cohesive Zone Approach,” Int. J. Solids Struct., 42(3–4), pp. 927–942. [CrossRef]
Basaran, C. , and Yan, C. Y. , 1998, “ A Thermodynamic Framework for Damage Mechanics of Solder Joints,” ASME J. Electron. Packag., 120(4), pp. 379–384. [CrossRef]
Basaran, C. , and Tang, H. , 2002, “ Implementation of a Thermodynamic Framework for Damage Mechanics of Solder Interconnects in Microelectronic Packaging,” Int. J. Damage Mech., 11(1), pp. 87–108. [CrossRef]
Basaran, C. , Lin, M. , and Ye, H. , 2003, “ A Thermodynamic Model for Electrical Current Induced Damage,” Int. J. Solids Struct., 40(26), pp. 7315–7327. [CrossRef]
Tang, H. , and Basaran, C. , 2003, “ A Damage Mechanics-Based Fatigue Life Prediction Model for Solder Joints,” ASME J. Electron. Packag., 125(1), pp. 120–125. [CrossRef]
Sosnovskiy, L. , and Sherbakov, S. , 2016, “ Mechanothermodynamic Entropy and Analysis of Damage State of Complex Systems,” Entropy, 18(7), p. 268. [CrossRef]
Yao, Y. , Vaynman, S. , Keer, L. M. , and Fine, M. E. , 2008, “ Energy-Based Micromechanics Analysis on Fatigue Crack Propagation Behavior in Sn–Ag Eutectic Solder,” J. Electron. Mater., 37(3), pp. 339–346. [CrossRef]
Yao, Y. , Wang, J. D. , and Keer, L. M. , 2017, “ A Phase Transformation Based Method to Predict Fatigue Crack Nucleation and Propagation in Metals and Alloys,” Acta Mater., 127, pp. 244–251. [CrossRef]
Pineau, A. , McDowell, D. L. , Busso, E. P. , and Antolovich, S. D. , 2016, “ Failure of Metals II: Fatigue,” Acta Mater., 107, pp. 484–507. [CrossRef]
Musinski, W. D. , and McDowell, D. L. , 2016, “ Simulating the Effect of Grain Boundaries on Microstructurally Small Fatigue Crack Growth From a Focused Ion Beam Notch Through a Three-Dimensional Array of Grains,” Acta Mater., 112, pp. 20–39. [CrossRef]
Castelluccio, G. M. , Musinski, W. D. , and McDowell, D. L. , 2016, “ Computational Micromechanics of Fatigue of Microstructures in the HCF–VHCF Regimes,” Int. J. Fatigue, 93(Pt. 2), pp. 387–396. [CrossRef]
Lall, P. , Shantaram, S. , Suhling, J. , and Locker, D. , 2015, “ Stress-Strain Behavior of SAC305 at High Strain Rates,” ASME J. Electron. Packag., 137(1), p. 011010. [CrossRef]
Niu, X. , Li, N. , and Shu, X. , 2014, “ Effect of Temperature and Strain Rate on Dynamic Mechanical Properties of Low Silver Lead-Free Solder,” Rare Met. Mater. Eng., 43(9), pp. 2167–2171.
Niu, X. Y. , Li, W. , Wang, G. X. , and Shu, X. F. , 2015, “ Effects of Temperature and Strain Rate on Mechanical Behavior of Low-Silver Lead-Free Solder Under Drop Impact,” J. Mater. Sci.: Mater. Electron., 26(1), pp. 601–607. [CrossRef]
Lall, P. , Zhang, D. , Yadav, V. , and Locker, D. , 2016, “ High Strain Rate Constitutive Behavior of SAC105 and SAC305 Lead-Free Solder During Operation at High Temperature,” Microelectron. Reliab., 62, pp. 4–17. [CrossRef]
Nourani, A. , and Spelt, J. K. , 2015, “ Combined Effect of Strain-Rate and Mode-Ratio on the Fracture of Lead-Free Solder Joints,” Mater. Des., 85, pp. 115–126. [CrossRef]
Yau, Y. H. , and Hua, S. N. , 2011, “ A Comprehensive Review of Drop Impact Modeling on Portable Electronic Devices,” ASME Appl. Mech. Rev., 64(2), p. 020803. [CrossRef]
Yu, D. , Kwak, J. , Park, S. , Chung, S. , and Yoon, J.-Y. , 2012, “ Effect of Shield-Can on Dynamic Response of Board-Level Assembly,” ASME J. Electron. Packag., 134(3), p. 031010. [CrossRef]
Yang, F. , and Meguid, S. A. , 2013, “ Efficient Multi-Level Modeling Technique for Determining Effective Board Drop Reliability of PCB Assembly,” Microelectron. Reliab., 53(7), pp. 975–984. [CrossRef]
Kok, C. K. , Ng, W. J. , Ooi, C. C. , and Liew, K. W. , 2016, “ Ball-Grid-Array Solder Joint Model for Assembly-Level Impact Reliability Prediction,” Microelectron. Reliab., 65, pp. 184–191. [CrossRef]
Cheng, H. C. , Cheng, T. H. , Chen, W. H. , Chang, T. C. , and Huang, H. Y. , 2016, “ Board-Level Drop Impact Reliability of Silicon Interposer-Based 2.5-D IC Integration,” IEEE Trans. Compon. Packag. Manuf. Technol., 6(10), pp. 1493–1504. [CrossRef]
Karppinen, J. , Li, J. , Pakarinen, J. , Mattila, T. T. , and Paulasto-Krockel, M. , 2012, “ Shock Impact Reliability Characterization of a Handheld Product in Accelerated Tests and Use Environment,” Microelectron. Reliab., 52(1), pp. 190–198. [CrossRef]
Wong, E. H. , and Mai, Y. W. , 2006, “ New Insights Into Board Level Drop Impact,” Microelectron. Reliab., 46(5–6), pp. 930–938. [CrossRef]
Kang, T. M. , Lee, D. W. , Hwang, Y. K. , Chung, Q. H. , Yoo, B. K. , Kang, T. M. , Lee, D. W. , Hwang, Y. K. , Chung, Q. H. , and Yoo, B. K. , 2011, “ A Study on the Correlation Between Board Level Drop Test Experiment and Simulation,” J. Microelectron. Packag. Soc., 18(2), pp. 35–41. http://ocean.kisti.re.kr/downfile/volume/ishm/MOKRBW/2011/v18n2/MOKRBW_2011_v18n2_35.pdf
Agwai, A. , Guven, I. , and Madenci, E. , 2012, “ Drop-Shock Failure Prediction in Electronic Packages by Using Peridynamic Theory,” IEEE Trans. Compon. Packag. Manuf. Technol., 2(3), pp. 439–447. [CrossRef]
Ho, P. S. , and Kwok, T. , 1989, “ Electromigration in Metals,” Rep. Prog. Phys., 52(3), pp. 301–348. [CrossRef]
Lee, T. Y. , Tu, K. N. , Kuo, S. M. , and Frear, D. R. , 2001, “ Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology,” J. Appl. Phys., 89(6), pp. 3189–3194. [CrossRef]
Tu, K. N. , 2003, “ Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects,” J. Appl. Phys., 94(9), pp. 5451–5473. [CrossRef]
Hu, C. K. , Gignac, L. , Rosenberg, R. , Liniger, E. , Rubino, J. , Sambucetti, C. , Domenicucci, A. , Chen, X. , and Stamper, A. K. , 2002, “ Reduced Electromigration of Cu Wires by Surface Coating,” Appl. Phys. Lett., 81(10), pp. 1782–1784. [CrossRef]
Hu, C. K. , Rosenberg, R. , and Lee, K. Y. , 1999, “ Electromigration Path in Cu Thin-Film Lines,” Appl. Phys. Lett., 74(20), pp. 2945–2947. [CrossRef]
Chao, B. , Chae, S. H. , Zhang, X. , Lu, K. H. , Ding, M. , Im, J. , and Ho, P. S. , 2006, “ Electromigration Enhanced Intermetallic Growth and Void Formation in Pb-Free Solder Joints,” J. Appl. Phys., 100(8), p. 084909. [CrossRef]
Tu, K. N. , Yeh, C. C. , Liu, C. Y. , and Chen, C. , 2000, “ Effect of Current Crowding on Vacancy Diffusion and Void Formation in Electromigration,” Appl. Phys. Lett., 76(8), pp. 988–990. [CrossRef]
Yao, Y. , Keer, L. M. , and Fine, M. E. , 2010, “ Modeling the Failure of Intermetallic/Solder Interfaces,” Intermetallics, 18(8), pp. 1603–1611. [CrossRef]
Chen, C. , Tong, H. M. , and Tu, K. N. , 2010, “ Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints,” Annu. Rev. Mater. Res., 40(40), pp. 531–555. [CrossRef]
Ye, H. , Basaran, C. , and Hopkins, D. , 2003, “ Thermomigration in Pb-Sn Solder Joints Under Joule Heating During Electric Current Stressing,” Appl. Phys. Lett., 82(7), pp. 1045–1047. [CrossRef]
Chang, Y. W. , Chiang, T. H. , and Chen, C. , 2007, “ Effect of Void Propagation on Bump Resistance Due to Electromigration in Flip-Chip Solder Joints Using Kelvin Structure,” Appl. Phys. Lett., 91(13), p. 132113. [CrossRef]
Chang, Y. W. , Liang, S. W. , and Chen, C. , 2006, “ Study of Void Formation Due to Electromigration in Flip-Chip Solder Joints Using Kelvin Bump Probes,” Appl. Phys. Lett., 89(3), p. 032103. [CrossRef]
Jen, M. H. R. , Liu, L. C. , and Lai, Y. S. , 2009, “ Electromigration on Void Formation of Sn3Ag1.5Cu FCBGA Solder Joints,” Microelectron. Reliab., 49(7), pp. 734–745. [CrossRef]
Wang, Y. X. , and Yao, Y. , 2017, “ A Physical Analysis to Current Exponent Variation Regularity and Electromigration Induced Failure,” J. Appl. Phys., 121(6), p. 065701. [CrossRef]
Kanchanomai, C. , Limtrakarn, W. , and Mutoh, Y. , 2005, “ Fatigue Crack Growth Behavior in Sn–Pb Eutectic Solder/Copper Joint Under Mode I Loading,” Mech. Mater., 37(11), pp. 1166–1174. [CrossRef]
Kuo, S. M. , and Lin, K. L. , 2008, “ Electromigration-Induced Void Formation at the Cu5Zn8/Solder Interface in a Cu/Sn–9Zn/Cu Sandwich,” J. Electron. Mater., 37(10), pp. 1611–1617. [CrossRef]
Miyazaki, T. , and Omata, T. , 2006, “ Electromigration Degradation Mechanism for Pb-Free Flip-Chip Micro Solder Bumps,” Microelectron. Reliab., 46(9–11), pp. 1898–1903. [CrossRef]
Gee, S. , Kelkar, N. , Huang, J. , and Tu, K. N. , 2005, “ Lead-Free and PbSn Bump Electromigration Testing,” ASME Paper No. IPACK2005-73417.
Liang, S. W. , Chang, Y. W. , and Chen, C. , 2006, “ Effect of Al-Trace Dimension on Joule Heating and Current Crowding in Flip-Chip Solder Joints Under Accelerated Electromigration,” Appl. Phys. Lett., 88(17), p. 172108. [CrossRef]
Yao, Y. , Keer, L. M. , and Fine, M. E. , 2009, “ Electromigration Effect on Pancake Type Void Propagation Near the Interface of Bulk Solder and Intermetallic Compound,” J. Appl. Phys., 105(6), p. 063710. [CrossRef]
Yao, Y. , Wang, Y. X. , Keer, L. M. , and Fine, M. E. , 2015, “ An Analytical Method to Predict Electromigration-Induced Finger-Shaped Void Growth in SnAgCu Solder Interconnect,” Scr. Mater., 95(1), pp. 7–10. [CrossRef]
Dalleau, D. , Weide-Zaage, K. , and Danto, Y. , 2003, “ Simulation of Time Depending Void Formation in Copper, Aluminum and Tungsten Plugged Via Structures,” Microelectron. Reliab., 43(9–11), pp. 1821–1826. [CrossRef]
Dalleau, D. D. D. , 2003, “ 3-D Time-Depending Simulation of Void Formation in Metallization Structures,” Ph.D. dissertation, University of Hannover, Hannover, Germany. http://d-nb.info/969247761/34
Orii, Y. , Toriyama, K. , Kohara, S. , Noma, H. , Okamoto, K. , and Uenishi, K. , 2012, “ Effect of Preformed Cu-Sn IMC Layer on Electromigration Reliability of Solder Capped Cu Pillar Bump Interconnection on an Organic Substrate,” Second IEEE CPMT Symposium Japan, Kyoto, Japan, Dec. 10–12, pp. 1–4.
Orii, Y. , Toriyama, K. , Kohara, S. , Noma, H. , Okamoto, K. , and Uenishi, K. , 2012, “ Effect of Preformed IMC Layer on Electromigration of Solder Capped Cu Pillar Bump Interconnection on an Organic Substrate,” Int. Symp. Microelectron., 2012(1), pp. 455–463.
Gan, H. , and Tu, K. N. , 2005, “ Polarity Effect of Electromigration on Kinetics of Intermetallic Compound Formation in Pb-Free Solder V-Groove Samples,” J. Appl. Phys., 97(6), p. 063514. [CrossRef]
Ren, F. , Nah, J. W. , Tu, K. N. , Xiong, B. , Xu, L. , and Pang, J. H. L. , 2006, “ Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joints,” Appl. Phys. Lett., 89(14), p. 141914. [CrossRef]
Lu, Y. D. , Wan, M. , En, Y. F. , Wang, X. , Cheng, J. , and He, X. Q. , 2011, “ Effect of Current Stress on Shear Strength and Fracture Mode of Al/SnAgCu/Cu Interconnecting Structure,” J. South China Univ. Technol., 39(11), pp. 120–124.
Su, F. , Mao, R. , Wang, X. , Wang, G. , and Pan, H. , 2011, “ Creep Behaviour of Sn–3.8Ag–0.7Cu Under the Effect of Electromigration: Experiments and Modelling,” Microelectron. Reliab., 51(5), pp. 1020–1024. [CrossRef]
Glickman, E. , Osipov, N. , Ivanov, A. , and Nathan, M. , 1998, “ Diffusional Creep as a Stress Relaxation Mechanism in Electromigration,” J. Appl. Phys., 83(1), pp. 100–107. [CrossRef]
Kim, D. , and Lu, W. , 2006, “ Creep Flow, Diffusion, and Electromigration in Small Scale Interconnects,” J. Mech. Phys. Solids, 54(12), pp. 2554–2568. [CrossRef]
Li, Z. , Dong, Y. , Li, S. , Xu, L. , and Sun, J. , 2007, “ Electromigration-Induced Coble Creep in Polycrystalline Materials,” Appl. Phys. Lett., 91(19), p. 191902. [CrossRef]
Long, X. , Wang, Y. , Keer, L. M. , and Yao, Y. , 2016, “ Mechanical Effects of Isolated Defects Within a Lead-Free Solder Bump Subjected to Coupled Thermal-Electrical Loading,” J. Micromech. Mol. Phys., 1(1), p. 1650004. [CrossRef]
Pharr, M. , Zhao, K. , Suo, Z. , Ouyang, F. Y. , and Liu, P. , 2011, “ Concurrent Electromigration and Creep in Lead-Free Solder,” J. Appl. Phys., 110(8), p. 083716. [CrossRef]
Wang, Y. X. , Yao, Y. , and Keer, L. M. , 2017, “ A Statistical Mechanics Model to Predict Electromigration Induced Damage and Void Growth in Solder Interconnects,” Phys. A, 468, pp. 195–204. [CrossRef]
Basaran, C. , Li, S. , Hopkins, D. C. , and Veychard, D. , 2009, “ Electromigration Time to Failure of SnAgCuNi Solder Joints,” J. Appl. Phys., 106(1), p. 013707. [CrossRef]
Basaran, C. , and Lin, M. , 2007, “ Damage Mechanics of Electromigration in Microelectronics Copper Interconnects,” Int. J. Mater. Struct. Integr., 1(1–3), pp. 16–39. [CrossRef]
Basaran, C. , and Lin, M. , 2007, “ Electromigration Induced Strain Field Simulations for Nanoelectronics Lead-Free Solder Joints,” Int. J. Solids Struct., 44(14–15), pp. 4909–4924. [CrossRef]
Lin, M. , and Basaran, C. , 2005, “ Electromigration Induced Stress Analysis Using Fully Coupled Mechanical–Diffusion Equations With Nonlinear Material Properties,” Comput. Mater. Sci., 34(1), pp. 82–98. [CrossRef]
Chan, Y. C. , and Yang, D. , 2010, “ Failure Mechanisms of Solder Interconnects Under Current Stressing in Advanced Electronic Packages,” Prog. Mater. Sci., 55(5), pp. 428–475. [CrossRef]
Yeh, Y. T. , Chou, C. K. , Hsu, Y. C. , Chen, C. , and Tu, K. N. , 2005, “ Threshold Current Density of Electromigration in Eutectic SnPb Solder,” Appl. Phys. Lett., 86(20), p. 203504. [CrossRef]
Hsu, Y. C. , Chen, D. C. , Liu, P. C. , and Chen, C. , 2005, “ Measurement of Electromigration Parameters of Lead-Free SnAg3.5 Solder Using U-Groove Lines,” J. Mater. Res., 20(10), pp. 2831–2837. [CrossRef]
Huang, Y. T. , Hsu, H. H. , and Wu, A. T. , 2014, “ Electromigration-Induced Back Stress in Critical Solder Length for Three-Dimensional Integrated Circuits,” J. Appl. Phys., 115(3), p. 034904. [CrossRef]
Xuan, F. Z. , Shao, S. S. , and Chen, Q. Q. , 2011, “ Synthesis Creep Behavior of Sn63Pb37 Under the Applied Stress and Electric Current,” Microelectron. Reliab., 51(12), pp. 2336–2340. [CrossRef]
Chen, R. , and Yang, F. , 2008, “ Electrocontact Heating in a Sn60Pb40 Solder Alloy,” J. Phys. D-Appl. Phys., 41(6), pp. 3142–3147. https://doi.org/10.1088/0022-3727/41/6/065404
Chen, R. , and Yang, F. , 2008, “ Impression Creep of a Sn60-Pb40 Alloy: The Effect of Electric Current,” J. Phys. D-Appl. Phys., 41(15), pp. 1525–1528. [CrossRef]
Zhao, G. , and Yang, F. , 2014, “ Effect of DC Current on Tensile Creep of Pure Tin,” Mater. Sci. Eng. A, 591(2), pp. 97–104. [CrossRef]
Rusinko, A. , 2016, “ Modeling the Effect of DC on the Creep of Metals in Terms of the Synthetic Theory of Irrecoverable Deformation,” Mech. Mater., 93, pp. 163–167. [CrossRef]
Li, W. Y. , Jin, H. , Yue, W. , Tan, M. Y. , and Zhang, X. P. , 2016, “ Creep Behavior of Micro-Scale Cu/Sn–3.0Ag–0.5Cu/Cu Joints Under Electro-Thermo-Mechanical Coupled Loads,” J. Mater. Sci.: Mater. Electron., 27(12), pp. 13022–13033. [CrossRef]
Ha, S. S. , Sung, J. Y. , Yoon, J. W. , and Jung, S. B. , 2011, “ Influence of Current Density on Mechanical Reliability of Sn–3.5Ag BGA Solder Joint,” Microelectron. Eng., 88(5), pp. 709–714. [CrossRef]

Figures

Grahic Jump Location
Fig. 4

Predictions of equivalent stress and von Mises plastic strain in the joints with different standoff heights after 40 cycles [69] (Copyright 2014 by Elsevier)

Grahic Jump Location
Fig. 1

Comparison of experiments and predictions of original and modified Anand model for lead-free solder Sn–3.5Ag [28] (Copyright 2005 by IEEE): (a) original Anand model and (b) modified Anand model

Grahic Jump Location
Fig. 7

Representative solder interconnect for 3D FE analysis

Grahic Jump Location
Fig. 8

Simulation of the current crowding effect [110] (Copyright 2010 by Annual Reviews)

Grahic Jump Location
Fig. 9

Schematic of experimental system under the combination of mechanical load and electric current [145] (Copyright 2011 by Elsevier)

Grahic Jump Location
Fig. 10

Effect of electric current on the stress exponent n and activation energy Q [145] (Copyright 2011 by Elsevier)

Grahic Jump Location
Fig. 2

Numerical and experimental stress–strain curves for the first two cycles for high lead solder Pb-3.5Sn [34] (Copyright 2004 by IEEE)

Grahic Jump Location
Fig. 3

Relationship between time to failure and strain rate for various frequencies [55] (Copyright 2002 by Emerald Insight)

Grahic Jump Location
Fig. 5

Representative drop impact simulation of BGA packaging

Grahic Jump Location
Fig. 6

Typical board level drop impact modeled by a two-spring system [99] (Copyright 2006 by Elsevier): (a) schematic of experimental system and (b) analytical model

Grahic Jump Location
Fig. 11

Schematic of experimental system under controlled temperature, mechanical load, and electric current [130] (Copyright 2011 by Elsevier)

Grahic Jump Location
Fig. 12

Effect of current density on the steady-state creep rate of Sn–3.8Ag–0.7Cu solder material [130] (Copyright 2011 by Elsevier)

Grahic Jump Location
Fig. 13

Schematic of experiment system with coupled electrical-thermal-mechanical loads [150] (Copyright 2016 by Springer)

Grahic Jump Location
Fig. 14

The effect of current stressing on the steady-state creep rate in Cu/SAC305/Cu joints under different tensile stresses and temperatures [150] (Copyright 2016 by Springer)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In