0
Review Article

Dynamical Models of the Camber and the Lateral Position in Flat Rolling

[+] Author and Article Information
Andreas Steinboeck

Automation and Control Institute,
Vienna University of Technology,
Gußhausstraße 27-29/376,
Vienna 1040, Austria
e-mail: andreas.steinboeck@tuwien.ac.at

Andreas Ettl

Christian Doppler Laboratory for Model-Based
Process Control in the Steel Industry,
Automation and Control Institute,
Vienna University of Technology,
Gußhausstraße 27-29/376,
Vienna 1040, Austria
e-mail: ettl@acin.tuwien.ac.at

Andreas Kugi

Professor
Christian Doppler Laboratory for Model-Based
Process Control in the Steel Industry,
Automation and Control Institute,
Vienna University of Technology,
Gußhausstraße 27-29/376,
Vienna 1040, Austria
e-mail: kugi@acin.tuwien.ac.at

1Corresponding author.

Manuscript received March 29, 2017; final manuscript received June 29, 2017; published online August 2, 2017. Editor: Harry Dankowicz.

Appl. Mech. Rev 69(4), 040801 (Aug 02, 2017) (14 pages) Paper No: AMR-17-1024; doi: 10.1115/1.4037177 History: Received March 29, 2017; Revised June 29, 2017

In flat rolling, the lateral position of the product in the rolling mill and the camber (curvature of the product centerline seen in top view) are key process variables. We explore how their evolution can be analytically modeled based on nonlinear geometric relations, material derivatives, balance equations, constitutive equations for the material flow in the roll gap, and a change of coordinates to obtain a time-free formulation. Based on example problems, we verify the developed novel model and further illustrate the mechanisms behind it. Finally, a literature review on models in this field reveals that there is not yet a consensus on the correct analytical model of the evolution of the camber in flat rolling. The literature review shows that most published models are special cases of the model developed in this paper.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lenard, J. , 2014, Primer on Flat Rolling, 2nd ed., Elsevier, Oxford, UK.
Ginzburg, V. , 2009, Flat-Rolled Steel Processes: Advanced Technologies, CRC Press, Boca Raton, FL. [CrossRef]
Fraga, C. , González, R. , Cancelas, J. , Enguita, L. , and Loredo, L. , 2004, “ Camber Measurement System in a Hot Rolling Mill,” IEEE Industry Applications Conference, 39th IAS Annual Meeting (IAS), Seattle, WA, Oct. 3–7, Vol. 2, pp. 897–902.
González, R. , Valdés, R. , and Cancelas, J. , 2001, “ Vision Based Measurement System to Quantify Straightness Defect in Steel Sheets,” Ninth International Conference on Computer Analysis of Images and Patterns (CAIP), Warsaw, Poland, Sept. 5–7, pp. 427–434.
He, C. , Jiao, Z. , and Wu, D. , 2010, “ Application of Machine Vision Technique in Plate Camber Control System,” Adv. Mater. Res., 139–141, pp. 2082–2086.
Hlobil, H. , Niel, K. , Prinz, M. , Trinkl, G. , Seyruck, W. , and Reisinger, J. , 2005, “ Camber Measurement at Hot Strip Mill at Voestalpine by Using Image Processing Method,” Proc. SPIE, 5679, pp. 140–145.
Kong, N. , Yoo, J. , Lee, J. , Yun, S. , Bae, J. , and Park, P. , 2011, “ Vision-Based Camber Measurement System in the Endless Hot Rolling Process,” Opt. Eng., 50(10), p. 107202. [CrossRef]
Montague, R. , Watton, J. , and Brown, K. , 2005, “ A Machine Vision Measurement of Slab Camber in Hot Strip Rolling,” J. Mater. Process. Technol., 168(1), pp. 172–180. [CrossRef]
Ollikkala, A. , Kananen, T. , Mäkynen, A. , Holappa, M. , Torppa, E. , and Harvala, T. , 2013, “ A Single Camera System for Camber Measurement in Hot Strip Rolling,” Ninth International Rolling Conference and Sixth European Rolling Conference, Venice, Italy, June 10–12, pp. 1–8.
Piot, J. , Tonnon, E. , and Dowdey, B. , 2003, “ Online Control, Hot Strip Roughing Mill: Camber Measurement, Technical Steel Research Series,” RFCS Publications, Luxembourg, Technical Report No. EUR 20644 EN.
Yang, Y. , Chen, C. , Ho, C. , Li, W. , and Wu, J. , 2008, “ Development of a Camber Measurement System in a Hot Rolling Mill,” IEEE Industry Applications Society Annual Meeting (IAS), Edmonton, AB, Canada, Oct. 5–9, pp. 1–6.
Prinz, K. , Steinboeck, A. , Müller, M. , Ettl, A. , and Kugi, A. , 2017, “ Automatic Gauge Control Under Laterally Asymmetric Rolling Conditions Combined With Feedforward,” IEEE Trans. Ind. Appl., 53(3), pp. 2560–2568. [CrossRef]
Prinz, K. , Schausberger, F. , Steinboeck, A. , and Kugi, A. , 2017, “ Feedforward Control of Lateral Asymmetries in Heavy-Plate Hot Rolling Using Vision-Based Position Estimation,” 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France, July 9–14, pp. 11799–11804.
Bald, W. , Beisemann, G. , Feldmann, H. , and Schultes, T. , 1987, “ Continuously Variable Crown (CVC) Rolling.,” Iron Steel Eng., 64(3), pp. 32–41.
Guo, R. , 1997, “ Prediction of Strip Profile in Rolling Process Using Influence Coefficients and Boussinesq's Equations,” ASME J. Manuf. Sci. Eng., 119(2), pp. 220–227. [CrossRef]
Malik, A. , and Hinton, J. , 2012, “ Displacement of Multiple, Coupled Timoshenko Beams in Discontinuous Nonlinear Elastic Contact, With Application to Rolling Mills,” ASME J. Manuf. Sci. Eng., 134(5), p. 051009. [CrossRef]
Koenig, T. , Steinboeck, A. , Kugi, A. , Heeg, R. , and Kiefer, T. , 2011, “ Deflection and Bending Model of a Four-High Mill Stand for Heavy Plate Rolling,” Fourth International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking (STEELSIM), Düsseldorf, Germany, June 27–July 4.
Steinboeck, A. , Koenig, T. , and Kugi, A. , 2013, “ Shear and Bending Stiffness of Composite Rolls,” Ninth International Rolling Conference and Sixth European Rolling Conference, Venice, Italy, June 10–12, pp. 1–14.
Heeg, R. , Kiefer, T. , Kugi, A. , Fichet, O. , and Irastorza, L. , 2007, “ Feedforward Control of Plate Thickness in Reversing Plate Mills,” IEEE Trans. Ind. Appl., 43(2), pp. 386–394. [CrossRef]
Guo, R. , 1990, “ Development of a Mathematical Model for Strip Thickness Profile,” Iron Steel Eng., 67(9), pp. 32–39. https://www.researchgate.net/publication/281108824_Development_of_a_Mathematical_Model_for_Strip_Thickness_Profile
Koenig, T. , Steinboeck, A. , and Kugi, A. , 2013, “ Online Calibration of a Mathematical Model for the Deflection of a Rolling Mill,” Ninth International Rolling Conference and Sixth European Rolling Conference, Venice, Italy, June 10–12, pp. 1–12.
Montmitonnet, P. , 2006, “ Hot and Cold Strip Rolling Processes,” Comput. Methods Appl. Mech. Eng., 195(48–49), pp. 6604–6625. [CrossRef]
Salimi, M. , and Forouzan, M. , 2002, “ Determination of Bending Actuators Set Points to Control Crown and Flatness in Hot Rolling of Strip,” J. Mater. Process. Technol., 125–126, pp. 670–677. [CrossRef]
Takahashi, R. , 2001, “ State of the Art in Hot Rolling Process Control,” Control Eng. Pract., 9(9), pp. 987–993. [CrossRef]
Wang, H.-Y. , Yang, Q. , Wang, X.-C. , He, F. , and Chen, Y.-F. , 2014, “ Study and Application of Camber Control Model of Intermediate Slab in Rough Rolling,” J. Iron Steel Res. Int., 21(9), pp. 817–822. [CrossRef]
Nilsson, A. , 1998, “ FE Simulations of Camber in Hot Strip Rolling,” J. Mater. Process. Technol., 80–81, pp. 325–329. [CrossRef]
Biggs, D. , Hardy, S. , and Brown, K. , 1998, “ Finite Element Modelling of Camber Development During Hot Rolling of Strip Steel,” Ironmaking Steelmaking, 25(1), pp. 81–89.
Kainz, A. , Pumhoessel, T. , Kurz, M. , Widder, M. , Aigner, L. , and Zeman, K. , 2016, “ Prediction of Camber Formation, Suppression and Control of Wedge-Shaped Hot Rolled Slabs by Analytical Concepts and Finite Elements,” IFAC-PapersOnLine, 49(20), pp. 238–243. [CrossRef]
Kurz, M. , Döll, R. , Kainz, A. , Pumhössel, T. , and Zeman, K. , 2015, “ Wedge and Camber Control,” METEC and Second European Steel Technology and Application Days (METEC-ESTAD), Düsseldorf, Germany, June 15–19, pp. 1–10. https://www.researchgate.net/publication/281968487_Wedge_and_Camber_Control
Okada, M. , Murayama, K. , Anabuki, Y. , and Hayashi, Y. , 2005, “ VSS Control of Strip Steering for Hot Rolling Mills,” 16th IFAC World Congress, Prague, Czech Republic, July 3–8, pp. 19–24.
Furukawa, Y. , Fujii, S. , and Taoka, H. , 1992, “ Application of Steering Control in Hot Strip Mill,” Tetsu-to-Hagané, 78(8), pp. 141–144 (in Japanese).
Gates, D. , and Tarnopolskaya, T. , 2008, “ Linear Theory for Lateral Displacements of a Metal Strip in a Tandem Cold-Rolling Mill With Asymmetries,” Proc. Inst. Mech. Eng., Part C, 222(7), pp. 1131–1148. [CrossRef]
Kang, Y. , and Won, S. , 2011, “ State Feedback Controller Design for Lateral Movement of a Strip in Hot Strip Rolling With Input Delay and Actuator Saturation,” 37th Annual Conference of the IEEE Industrial Electronics Society (IECON), Melbourne, Australia, Nov. 7–10, pp. 757–762.
Kiyota, T. , Matsumoto, H. , Adachi, Y. , Kondo, E. , Tsuji, Y. , and Aso, S. , 2003, “ Tail Crash Control in Hot Strip Mill by LQR,” American Control Conference (ACC), Denver, CO, June 4–6, pp. 3049–3054.
Kwon, W. , Kim, S. , and Won, S. , 2015, “ Active Disturbance Rejection Control for Strip Steering Control in Hot Strip Finishing Mill,” IFAC-PapersOnLine, 48(17), pp. 42–47. [CrossRef]
Loney, D. , Neuschutz, E. , Sanfilippo, F. , Robinson, J. , and Nilsson, A. , 2002, “ Rolling Flat Products, Optimisation of the Use of a Strip Geometry Control System, Technical Steel Research Series,” RFCS Publications, Luxembourg, Technical Report No. EUR 20101 EN.
Malloci, I. , Daafouz, J. , Iung, C. , Bonidal, R. , and Szczepanski, P. , 2010, “ Robust Steering Control of Hot Strip Mill,” IEEE Trans. Control Syst. Technol., 18(4), pp. 908–917. [CrossRef]
Matsumoto, H. , and Ishii, A. , 2002, “ Three-Dimensional Simulation of Snake Motion in a Tandem Cold Mill,” 44th Mechanical Working and Steel Processing Conference (MWSP), Orlando, FL, Sept. 8–11, Vol. XL, pp. 25–36. http://digital.library.aist.org/pages/PR-317-025.htm
Tanaka, Y. , Omori, K. , Miyake, T. , Nishizaki, K. , Inoue, M. , and Tezuka, S. , 1987, “ Camber Control Techniques in Plate Rolling,” Kawasaki Steel, Tokyo, Japan, Technical Report No. 16. http://www.jfe-steel.co.jp/archives/en/ksc_giho/no.16/tobira012.html
Nakajima, H. , Kikuma, S. , Matsumoto, H. , Kajiwara, T. , Kimura, T. , and Takawa, M. , 1980, “ Research Into Methods for Controlling Snaking in Hot Strip Rolling,” Japanese Spring Conference for the Technology of Plasticity, Vol. 116, pp. 61–64 (in Japanese).
Schausberger, F. , Steinboeck, A. , and Kugi, A. , 2015, “ Optimization-Based Estimator for the Contour and Movement of Heavy Plates in Hot Rolling,” J. Process Control, 29, pp. 23–32. [CrossRef]
Yoo, J. , Kong, N. , Song, J. , and Park, P. , 2010, “ Camber Detection Algorithm Using the Image Stitching Technique in Hot-Rolling Process,” IASTED International Conference Robotics (Robo), Phuket, Thailand, Nov. 24–26, pp. 74–78.
Schausberger, F. , Steinboeck, A. , and Kugi, A. , 2017, “ Feedback Control of the Contour Shape in Heavy-Plate Hot Rolling,” IEEE Trans. Control Syst. Technol. (accepted).
Yu, B. , Liu, H. , Yang, L. , Peng, Y. , and Li, Z. , 2009, “ A New Type of Contact Shape Meter and Its Industry Application,” International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Zhangjiajie, China, Apr. 11–12, Vol. 2, pp. 20–23.
Kanemori, S. , Kinose, R. , Maniwa, S. , Owada, T. , Furumoto, H. , and Sueda, S. , 2014, “ Development of Strip Shape Meter With High Accuracy Under Severe Conditions of Hot Strip Mill,” Mitsubishi Heavy Ind. Tech. Rev., 51(3), pp. 27–31. https://www.mhi.com/company/technology/review/Vol.51No.3/abstracte-51-3-27.html
Tarnopolskaya, T. , Gates, D. , de Hoog, F. , Yuen, W. , and Dixon, A. , 2004, “ Numerical Analysis of Lateral Movement of a Metal Strip During Cold Rolling,” ANZIAM J., 45, pp. C179–C186. https://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/881
Kneschke, A. , 1957, “ Zur hydrodynamischen Theorie des Warmwalzens,” Freiberg. Forschungsh., 16, pp. 5–34 (in German).
Pittner, J. , and Simaan, M. , 2011, Tandem Cold Metal Rolling Mill Control: Using Practical Advanced Methods (Advances in Industrial Control), Springer, London. [CrossRef]
Moon, Y. , Yo, I. , and Van Tyne, C. , 2004, “ Control Scheme Using Forward Slip for a Multi-Stand Hot Strip Rolling Mill,” KSME Int. J., 18(6), pp. 972–978. [CrossRef]
Weber, K. , 1965, “ Hydrodynamic Theory of Rolling,” J. Iron Steel Inst., 203, pp. 27–35.
Yildiz, S. , Forbes, J. , Huang, B. , Zhang, Y. , Wang, F. , Vaculik, V. , and Dudzic, M. , 2009, “ Dynamic Modelling and Simulation of a Hot Strip Finishing Mill,” Appl. Math. Modell., 33(7), pp. 3208–3225. [CrossRef]
Normey-Rico, J. , and Camacho, E. , 2007, Control of Dead-Time Processes, Springer, London.
Bronstein, I. , Semendyayev, K. , Musiol, G. , and Mühlig, H. , 2015, Handbook of Mathematics, 6th ed., Springer, Berlin.
Choi, Y. , and Lee, M. , 2009, “ PID Sliding Mode Control for Steering of Lateral Moving Strip in Hot Strip Rolling,” Int. J. Control, Autom. Syst., 7(3), pp. 399–407. [CrossRef]
Hol, C. , de Roo, J. , Kampmeijer, L. , Dirkson, T. , Schipper, G. , La Maire, M. , and van der Lugt, J. , 2013, “ Model Predictive Controller for Strip-Tracking During Tail-Out of the Finishing Mill,” IFAC Proc. Vol., 46(16), pp. 397–402. [CrossRef]
Ishikawa, T. , Tozawa, Y. , and Nishizawa, J. , 1988, “ Fundamental Study on Snaking in Strip Rolling,” ISIJ Int., 28(6), pp. 485–490. [CrossRef]
Kang, Y. , Jang, Y. , Choi, Y. , Lee, D. , and Won, S. , 2015, “ An Improved Model for Camber Generation During Rough Rolling Process,” ISIJ Int., 55(9), pp. 1980–1986. [CrossRef]
Kim, K. , and Won, S. , 2013, “ Observer-Based Guaranteed Cost Control for Lateral Motion of a Strip in Hot Rolling Process,” Tenth IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, June 12–14, pp. 1479–1484.
Montague, R. , Watton, J. , and Brown, K. , 2005, “ Centre-Line Deviation as a Measure of Camber in Steel Slabs During Unrestricted Horizontal Rolling,” Proc. Inst. Mech. Eng., Part C, 219(8), pp. 775–783. [CrossRef]
Stukach, A. , 1978, “ Sheet Rolling in Rolls Inclined Relative to Each Other,” Tsvetn. Met., Sov. J. Non-Ferrous Met., 51(3), pp. 58–60 (in Russian).
Tarnopolskaya, T. , and Yuen, W. , 2005, “ Analysis of the Effect of Tension at the Entry of Cold Rolling Mill on the Stability of Strip Tracking,” ISIJ Int., 45(9), pp. 1316–1321. [CrossRef]
Tarnopolskaya, T. , Gates, D. , de Hoog, F. , and Yuen, W. , 2005, “ Instability in Lateral Dynamics of a Metal Strip in Cold Rolling,” ANZIAM J., 46, pp. C987–C1000. [CrossRef]
Tarnopolskaya, T. , and Gates, D. , 2008, “ Analysis of the Effect of Strip Buckling on Stability of Strip Lateral Motion With Application to Cold Rolling of Steel,” ASME J. Dyn. Syst., Meas., Control, 130(1), p. 011001. [CrossRef]
Washikita, Y. , Isei, Y. , Buei, Y. , Aihara, Y. , and Takeda, M. , 2016, “ Strip Walking Control Technology in Hot Strip Rolling,” Control Research Lab, Process Research Laboratories, Futtsu, Japan, Technical Report No. 111. http://www.nssmc.com/en/tech/report/nssmc/pdf/111-03.pdf
Galkina, A. , Schlacher, K. , and Gafur, I. , 2016, “ Model Predictive Control for the Strip Infeed in Hot Rolling Mills,” BHM Berg- Hüttenmänn. Monatsh., 161(11), pp. 520–525 (in German). [CrossRef]
Galkina, A. , Gafur, I. , and Schlacher, K. , 2017, “ Model Predictive Control With Linear Programming for the Strip Infeed in Hot Rolling Mills,” 20th World Congress of the International Federation of Automatic Control (IFAC), Toulouse, France, July 9–14, pp. 11793–11798.
Kang, Y. , Choi, Y.-J. , Oh, G. , and Won, S. , 2013, “ Estimation of Camber Generation in Rough Rolling Process,” IFAC Proc. Vol., 46(16), pp. 436–439. [CrossRef]
Kang, Y. , Jang, Y. , Choi, Y. , Lee, D. , and Won, S. , 2015, “ Camber Regulation in Rough Rolling Process Using Wedge Estimation of Incoming Bar,” ISIJ Int., 55(4), pp. 851–857. [CrossRef]
Shiraishi, T. , Ibata, H. , Mizuta, A. , Nomura, S. , Yoneda, E. , and Hirata, K. , 1991, “ Relation Between Camber and Wedge in Flat Rolling Under Restrictions of Lateral Movement,” ISIJ Int., 31(6), pp. 583–587. [CrossRef]
Hayashi, C. , and Kono, T. , 1977, “ Analysis of the Camber Generating Mechanism in a Strip Mill,” Tetsu-to-Hagané, 63(2), pp. A21–A24 (in Japanese).
Okamura, Y. , and Hoshino, I. , 1997, “ State Feedback Control of the Strip Steering for Aluminum Hot Rolling Mills,” Control Eng. Pract., 5(8), pp. 1035–1042. [CrossRef]
Cuzzola, F. , and Dieta, N. , 2003, “ Camber and Wedge Compensation in Hot Strip Rolling,” IFAC Workshop on New Technologies for Automation of Metallurgical Industry, Shanghai, China, Oct. 11–13. https://www.researchgate.net/publication/312538936_Camber_and_wedge_compensation_in_hot_strip_rolling
Young, G. , Shelton, J. , and Fang, B. , 1989, “ Interaction of Web Spans—Part I: Statics,” ASME J. Dyn. Syst., Meas., Control, 111(3), pp. 490–496. [CrossRef]
Young, G. , Shelton, J. , and Fang, B. , 1989, “ Interaction of Web Spans—Part II: Dynamics,” ASME J. Dyn. Syst., Meas., Control, 111(3), pp. 497–504. [CrossRef]
Kokotovic, P. , Khalil, H. , and O‘Reilly, J. , 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, London.

Figures

Grahic Jump Location
Fig. 1

Top view of mill stand and flat product

Grahic Jump Location
Fig. 2

Stress resultants in the product at the entry and exit port of the roll gap

Grahic Jump Location
Fig. 3

Stand-alone simulation model

Grahic Jump Location
Fig. 4

Tangential rolling (p′(0−)=p′(0+)=0) with κ(0) = const., Δh+/h¯+=Δh−/h¯−, and λ = 1.4

Grahic Jump Location
Fig. 5

Straight rolling (ω− = 0) of a cambered product with κ(0) = const., Δh− = 0, Δh+ = 0, and λ = 1.4

Grahic Jump Location
Fig. 6

Straight rolling (ω− = 0) of an initially straight product (κ(0) = 0) with φ(0−)=−0.1  rad, Δh+/h¯+−Δh−/h¯−=0.15, and λ = 1.4

Grahic Jump Location
Fig. 7

Straight rolling (ω = 0) of an initially straight product (κ(0 − ) = 0) with φ(0−)=−0.1  rad, Δh− = 0, Δh+ = 0, and λ = λ0 + 1 where λ0 = 1 and λ1 = 0.2/m

Grahic Jump Location
Fig. 8

Rolling of an initially straight product (κ(0) = 0) with upstream angular velocity ω−=(−0.1  rad/m)v¯−, φ(0−)|X=0=0, Δh− = 0, Δh+ = 0, and λ = 1.4

Grahic Jump Location
Fig. 10

Top view of the deformation (elongation) of an infinitesimal trapezoidal section of the product in the roll gap

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In