0
Review Article

An Overview of Theories of Continuum Mechanics With Nonlocal Elastic Response and a General Framework for Conservative and Dissipative Systems

[+] Author and Article Information
Arun R. Srinivasa

Holdredge/Paul Professor
Fellow ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843-3123
e-mail asrinivasa@tamu.edu

J. N. Reddy

Oscar S. Wyatt Jr. Chair
Regents Professor
Distinguished Professor
Life Fellow ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843-3123
e-mail: jnreddy@tamu.edu

Manuscript received September 20, 2016; final manuscript received April 22, 2017; published online June 6, 2017. Assoc. Editor: Pradeep R. Guduru.

Appl. Mech. Rev 69(3), 030802 (Jun 06, 2017) (18 pages) Paper No: AMR-16-1074; doi: 10.1115/1.4036723 History: Received September 20, 2016; Revised April 22, 2017

The aim of this review is to classify and provide a summary of the most widely used theories of continuum mechanics with nonlocal elastic response ranging from generalized continua to peridynamics showing, in broad outlines, the similarities and differences between them. We then show that, for elastic materials, these disparate approaches can be unified using a total energy-based methodology. While our primary focus is on elastic response, we show that a large class of local and nonlocal dissipative systems can also be unified by extending this methodology to a wide (but special) class of nonlocal dissipative continua. We hope that the paper may serve as a starting point for researchers for the development of novel nonlocal models.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Silling, S. A. , Epton, M. , Weckner, O. , Xu, J. , and Askari, E. , 2007, “ Peridynamic States and Constitutive Modeling,” J. Elasticity, 88(2), pp. 151–184. [CrossRef]
Pfeffer, W. F. , 1987, “ On the Continuity of the Volterra Variational Derivative,” J. Funct. Anal., 71(1), pp. 195–197. [CrossRef]
van Leeuwen, R. , and Baerends, E. J. , 1995, “ Energy Expressions in Density-Functional Theory Using Line Integrals,” Phys. Rev. A, 51(1), p. 170. [CrossRef] [PubMed]
Bazant, Z. P. , and Jirásek, M. , 2002, “ Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress,” J. Eng. Mech., 128(11), pp. 1119–1149. [CrossRef]
Haltas, I. , and Ulusoy, S. , 2015, “ Scaling and Scale Invariance of Conservation Laws in Reynolds Transport Theorem Framework,” Chaos, 25(7), p. 075406. [CrossRef] [PubMed]
Horstemeyer, M. F. , and Bammann, D. J. , 2010, “ Historical Review of Internal State Variable Theory for Inelasticity,” Int. J. Plast., 26(9), pp. 1310–1334. [CrossRef]
Toupin, R. A. , 1964, “ Theories of Elasticity With Couple-Stress,” Arch. Ration. Mech. Anal., 17(2), pp. 85–112. [CrossRef]
Wang, C. M. , Reddy, J. N. , and Lee, K. H. , 2000, Shear Deformable Beams and Plates: Relationships With Classical Solutions, Elsevier, Oxford, UK.
Reddy, J. N. , 2017, Energy Principles and Variational Methods in Applied Mechanics, 3rd ed., Wiley, New York.
Jasiuk, I. , and Ostoja-Starzewski, M. , 1995, “ Planar Cosserat Elasticity of Materials With Holes and Intrusions,” ASME Appl. Mech. Rev., 48(11S), pp. S11–S18. [CrossRef]
Bouyge, F. , Jasiuk, I. , Boccara, S. , and Ostoja-Starzewski, M. , 2002, “ A Micromechanically Based Couple-Stress Model of an Elastic Orthotropic Two-Phase Composite,” Eur. J. Mech. A, 21(3), pp. 465–481. [CrossRef]
Yoo, A. , and Jasiuk, I. , 2006, “ Couple-Stress Moduli of a Trabecular Bone Idealized as a 3D Periodic Cellular Network,” J. Biomech., 39(12), pp. 2241–2252. [CrossRef] [PubMed]
Fleck, N. A. , and Hutchinson, J. W. , 1993, “ A Phenomenological Theory for Strain Gradient Effects in Plasticity,” J. Mech. Phys. Solids, 41(12), pp. 1825–1857. [CrossRef]
Mindlin, R. D. , and Eshel, N. N. , 1968, “ On First Strain-Gradient Theories in Linear Elasticity,” Int. J. Solids Struct., 4(1), pp. 109–124. [CrossRef]
Hadjesfandiari, A. R. , and Dargush, G. F. , 2011, “ Couple Stress Theory for Solids,” Int. J. Solids Struct., 48(18), pp. 2496–2510. [CrossRef]
Srinivasa, A. R. , and Reddy, J. N. , 2013, “ A Model for a Constrained, Finitely Deforming, Elastic Solid With Rotation Gradient Dependent Strain Energy, and Its Specialization to von Kármán Plates and Beams,” J. Mech. Phys. Solids, 61(3), pp. 873–885. [CrossRef]
Arbind, A. , Reddy, J. N. , and Srinivasa, A. R. , 2017, “ Nonlinear Analysis of Beams With Rotation Gradient Dependent Potential Energy for Constrained Micro-Rotation,” Eur. J. Mech. A, 65(4), pp. 178–194. [CrossRef]
Yang, F. , Chong, A. , Lam, D. C. C. , and Tong, P. , 2002, “ Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct., 39(10), pp. 2731–2743. [CrossRef]
Park, S. K. , and Gao, X.-L. , 2008, “ Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem,” Z. Angew. Math. Phys., 59(5), pp. 904–917. [CrossRef]
Ma, H. M. , Gao, X.-L. , and Reddy, J. N. , 2008, “ A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory,” J. Mech. Phys. Solids, 56(12), pp. 3379–3391. [CrossRef]
Ma, H. M. , Gao, X.-L. , and Reddy, J. N. , 2011, “ A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory,” Acta Mech., 220(1–4), pp. 217–235. [CrossRef]
Romanoff, J. , Reddy, J. N. , and Jelovica, J. , 2016, “ Using Non-Local Timoshenko Beam Theories for Prediction of Micro- and Macro-Structural Responses,” Compos. Struct., 156, pp. 410–420. [CrossRef]
Reddy, J. N. , and Srinivasa, A. R. , 2014, “ Non-Linear Theories of Beams and Plates Accounting for Moderate Rotations and Material Length Scales,” Int. J. Non-Linear Mech., 66, pp. 43–53. [CrossRef]
Shield, R. T. , 1973, “ The Rotation Associated With Large Strains,” SIAM J. Appl. Math., 25(3), pp. 483–491. [CrossRef]
Eringen, A. C. , 2002, Nonlocal Continuum Field Theories, Springer Science & Business Media, New York.
Eringen, A. C. , 2012, Microcontinuum Field Theories—I: Foundations and Solids, Springer Science & Business Media, New York.
Eringen, A. C. , 1983, “ On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves,” J. Appl. Phys., 54(9), pp. 4703–4710. [CrossRef]
Lazar, M. , Maugin, G. A. , and Aifantis, E. C. , 2006, “ On a Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications,” Int. J. Solids Struct., 43(6), pp. 1404–1421. [CrossRef]
Reddy, J. N. , 2007, “ Nonlocal Theories for Bending, Buckling and Vibration of Beams,” Int. J. Eng. Sci., 45(2), pp. 288–307. [CrossRef]
Aifantis, E. C. , 2011, “ On the Gradient Approach–Relation to Eringen's Nonlocal Theory,” Int. J. Eng. Sci., 49(12), pp. 1367–1377. [CrossRef]
Silling, S. A. , 2000, “ Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces,” J. Mech. Phys. Solids, 48(1), pp. 175–209. [CrossRef]
Warren, T. L. , Silling, S. A. , Askari, A. , Weckner, O. , Epton, M. A. , and Xu, J. , 2009, “ A Non-Ordinary State-Based Peridynamic Method to Model Solid Material Deformation and Fracture,” Int. J. Solids Struct., 46(5), pp. 1186–1195. [CrossRef]
Silling, S. A. , and Lehoucq, R. B. , 2010, “ Peridynamic Theory of Solid Mechanics,” Adv. Appl. Mech., 44, pp. 73–168.
Ha, Y. D. , and Bobaru, F. , 2010, “ Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics,” Int. J. Fract., 162(1–2), pp. 229–244. [CrossRef]
Foster, J. T. , Silling, S. A. , and Chen, W. W. , 2010, “ Viscoplasticity Using Peridynamics,” Int. J. Numer. Methods Eng., 81(10), pp. 1242–1258.
Chen, X. , and Gunzburger, M. , 2011, “ Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics,” Comput. Methods Appl. Mech. Eng., 200(9), pp. 1237–1250. [CrossRef]
Tupek, M. , Rimoli, J. , and Radovitzky, R. , 2013, “ An Approach for Incorporating Classical Continuum Damage Models in State-Based Peridynamics,” Comput. Methods Appl. Mech. Eng., 263, pp. 20–26. [CrossRef]
Chowdhury, S. R. , Roy, P. , Roy, D. , and Reddy, J. N. , 2016, “ A Peridynamic Theory for Linear Elastic Shells,” Int. J. Solids Struct., 84, pp. 110–132. [CrossRef]
Hu, W. , 2012, “ Peridynamic Models for Dynamic Brittle Fracture,” Ph.D. dissertation, University of Nebraska, Lincoln, NE.
Amani, J. , Oterkus, E. , Areias, P. , Zi, G. , Nguyen-Thoi, T. , and Rabczuk, T. , 2016, “ A Non-Ordinary State-Based Peridynamics Formulation for Thermoplastic Fracture,” Int. J. Impact Eng., 87, pp. 83–94. [CrossRef]
Sarkar, S. , Nowruzpour, M. , Reddy, J. N. , and Srinivasa, A. R. , 2017, “ A Discrete Lagrangian Based Direct Approach to Macroscopic Modelling,” J. Mech. Phys. Solids, 98, pp. 172–180. [CrossRef]
Littlewood, D. J. , 2010, “ Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact,” ASME Paper No. IMECE2010-40621.
Beris, A. N. , and Edwards, B. J. , 1994, Thermodynamics of Flowing Systems: With Internal Microstructure, Vol. 36, Oxford University Press, Oxford, UK.
Mindlin, R. D. , 1965, “ Stress Functions for a Cosserat Continuum,” Int. J. Solids Struct., 1(3), pp. 265–271. [CrossRef]
Maugin, G. A. , and Metrikine, A. V. , 2010, “ Mechanics of Generalized Continua,” Advances in Mechanics and Mathematics, Vol. 21, Springer, Berlin.
Green, A. E. , and Naghdi, P. M. , 1995, “ A Unified Procedure for Construction of Theories of Deformable Media—II: Generalized Continua,” Proc. R. Soc. London, Ser. A, 448(1934), pp. 357–377. [CrossRef]
Green, A. E. , Naghdi, P. M. , and Rivlin, R. S. , 1965, “ Directors and Multipolar Displacements in Continuum Mechanics,” Int. J. Eng. Sci., 2(6), pp. 611–620. [CrossRef]
Antman, S. S. , 1973, “ The Theory of Rods,” Linear Theories of Elasticity and Thermoelasticity, Springer, Berlin, pp. 641–703.
Naghdi, P. M. , 1973, “ The Theory of Shells and Plates,” Linear Theories of Elasticity and Thermoelasticity, Springer, Berlin, pp. 425–640.
Pai, D. K. , 2002, “ Strands: Interactive Simulation of Thin Solids Using Cosserat Models,” Comput. Graphics Forum, 21(3), pp. 347–352. [CrossRef]
Manning, R. S. , Maddocks, J. H. , and Kahn, J. D. , 1996, “ A Continuum Rod Model of Sequence-Dependent DNA Structure,” J. Chem. Phys., 105(13), pp. 5626–5646. [CrossRef]
Leslie, F. M. , 1971, “ Continuum Theory of Liquid Crystals,” Rheol. Acta, 10(1), pp. 91–95. [CrossRef]
Lurie, S. , Volkov-Bogorodsky, D. , Zubov, V. , and Tuchkova, N. , 2009, “ Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Applications for Filled Nanocomposites,” Comput. Mater. Sci., 45(3), pp. 709–714. [CrossRef]
Green, A. E. , and Rivlin, R. S. , 1965, “ Multipolar Continuum Mechanics: Functional Theory—I,” Proc. R. Soc. London, Ser. A, 284(1398), pp. 303–324. [CrossRef]
Green, A. E. , McInnis, B. C. , and Naghdi, P. M. , 1968, “ Elastic-Plastic Continua With Simple Force Dipole,” Int. J. Eng. Sci., 6(7), pp. 373–394. [CrossRef]
Green, A. E. , and Naghdi, P. M. , 1965, “ Plasticity Theory and Multipolar Continuum Mechanics,” Mathematika, 12(01), pp. 21–26. [CrossRef]
Batra, R. C. , 1987, “ The Initiation and Growth of, and the Interaction Among, Adiabatic Shear Bands in Simple and Dipolar Materials,” Int. J. Plast., 3(1), pp. 75–89. [CrossRef]
Eshelby, J. D. , 1956, “ The Continuum Theory of Lattice Defects,” Solid State Phys., 3, pp. 79–144.
Eshelby, J. D. , 1999, “ Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics,” Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, Springer, New York, pp. 82–119.
Epstein, M. , and Maugin, G. A. , 1990, “ The Energy-Momentum Tensor and Material Uniformity in Finite Elasticity,” Acta Mech., 83(3–4), pp. 127–133. [CrossRef]
Naghdi, P. M. , and Srinivasa, A. R. , 1993, “ A Dynamical Theory of Structured Solids—I: Basic Developments,” Philos. Trans. R. Soc. London, Ser. A, 345(1677), pp. 425–458. [CrossRef]
Gurtin, M. E. , 1999, “ The Nature of Configurational Forces,” Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, Springer, New York, pp. 281–314.
Gross, D. , Kolling, S. , Mueller, R. , and Schmidt, I. , 2003, “ Configurational Forces and Their Application in Solid Mechanics,” Eur. J. Mech. A, 22(5), pp. 669–692. [CrossRef]
Gurtin, M. E. , 2008, Configurational Forces as Basic Concepts of Continuum Physics, Vol. 137, Springer Science & Business Media, New York.
Naghdi, P. M. , and Srinivasa, A. R. , 1994, “ Characterization of Dislocations and Their Influence on Plastic Deformation in Single Crystals,” Int. J. Eng. Sci., 32(7), pp. 1157–1182. [CrossRef]
Rajagopal, K. R. , and Srinivasa, A. R. , 2005, “ On the Role of the Eshelby Energy-Momentum Tensor in Materials With Multiple Natural Configurations,” Math. Mech. Solids, 10(1), pp. 3–24. [CrossRef]
Baek, S. , and Srinivasa, A. R. , 2003, “ A Variational Procedure Utilizing the Assumption of Maximum Dissipation Rate for Gradient-Dependent Elastic–Plastic Materials,” Int. J. Non-Linear Mech., 38(5), pp. 659–662. [CrossRef]
Ziegler, H. , 1968, “ A Possible Generalization of Onsager's Theory,” Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Springer, New York, pp. 411–424.
Rajagopal, K. R. , and Srinivasa, A. R. , 2004, “ On Thermomechanical Restrictions of Continua,” Proc. R. Soc. London, Ser. A, 460(2042), pp. 631–651. [CrossRef]
Lee, E. H. , 1969, “ Elastic-Plastic Deformation at Finite Strains,” ASME J. Appl. Mech., 36(1), pp. 1–6. [CrossRef]
Eckart, C. , 1948, “ The Thermodynamics of Irreversible Processes—IV: The Theory of Elasticity and Anelasticity,” Phys. Rev., 73(4), p. 373. [CrossRef]
Rajagopal, K. R. , and Srinivasa, A. R. , 1998, “ Mechanics of the Inelastic Behavior of Materials—Part 1: Theoretical Underpinnings,” Int. J. Plast., 14(10), pp. 945–967. [CrossRef]
Grassl, P. , Xenos, D. , Jirásek, M. , and Horák, M. , 2014, “ Evaluation of Nonlocal Approaches for Modelling Fracture Near Nonconvex Boundaries,” Int. J. Solids Struct., 51(18), pp. 3239–3251. [CrossRef]
Provatas, N. , and Elder, K. , 2011, Phase-Field Methods in Materials Science and Engineering, Wiley, New York.
Mitchell, J. A. , 2011, “ A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2011-3166.
Sun, S. , and Sundararaghavan, V. , 2014, “ A Peridynamic Implementation of Crystal Plasticity,” Int. J. Solids Struct., 51(19), pp. 3350–3360. [CrossRef]
Reddy, J. N. , and Srinivasa, A. R. , 2015, “ On the Force–Displacement Characteristics of Finite Elements for Elasticity and Related Problems,” Finite Elem. Anal. Des., 104, pp. 35–40. [CrossRef]
Kaufman, A. N. , 1984, “ Dissipative Hamiltonian Systems: A Unifying Principle,” Phys. Lett. A, 100(8), pp. 419–422. [CrossRef]
Grmela, M. , and Öttinger, H. C. , 1997, “ Dynamics and Thermodynamics of Complex Fluids—I: Development of a General Formalism,” Phys. Rev. E, 56(6), p. 6620. [CrossRef]
Beris, A. N. , 2001, “ Bracket Formulation as a Source for the Development of Dynamic Equations in Continuum Mechanics,” J. Non-Newtonian Fluid Mech., 96(1), pp. 119–136. [CrossRef]
Clausius, R. , and Hirst, T. A. , 2012, The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, Ulan Press, Paris, France.
Truesdell, C. , and Muncaster, R. G. , 1980, “ Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics,” Research Supported by the National Science Foundation (Pure and Applied Mathematics, Vol. 83), Academic Press, New York, p. 1.
De Groot, S. R. , and Mazur, P. , 2011, Non-Equilibrium Thermodynamics, Dover, New York.
Onsager, L. , 1931, “ Reciprocal Relations in Irreversible Processes—I,” Phys. Rev., 37(4), p. 405. [CrossRef]
Onsager, L. , 1931, “ Reciprocal Relations in Irreversible Processes—II,” Phys. Rev., 38(12), p. 2265. [CrossRef]
Ziegler, H. , 1962, “ Some Extremum Principles in Irreversible Thermodynamics, With Application to Continuum Mechanics,” J. Appl. Math. Mech., 45(4), p. 271.
Allen, S. M. , and Cahn, J. W. , 1979, “ A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening,” Acta Metall., 27(6), pp. 1085–1095. [CrossRef]
Cahn, J. W. , 1961, “ On Spinodal Decomposition,” Acta Metall., 9(9), pp. 795–801. [CrossRef]
Rajagopal, K. R. , and Srinivasa, A. R. , 2007, “ On the Response of Non-Dissipative Solids,” Proc. R. Soc. London, Ser. A, 463(2078), pp. 357–367. [CrossRef]
Rajagopal, K. R. , and Srinivasa, A. R. , 2009, “ On a Class of Non-Dissipative Materials That are Not Hyperelastic,” Proc. R. Soc. London, Ser. A, 465(2102), pp. 493–500. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A taxonomy of purely mechanical continuum theories; models that incorporate additional length scales are of type III and type IV. We will focus attention only on the theories in the gray box.

Grahic Jump Location
Fig. 2

The notion of the reference and current bond vectors in the peridynamic theory. A function Y[x]<ξ> maps a reference bond vector ξ to the current bond vector x′−x. The energy density functional at X, WX maps all the bond vectors at X to a scalar.

Grahic Jump Location
Fig. 3

A schematic diagram of a material with an additional vector field: (a) reference, (b) bend, (c) splay, and (d) twist motions, which are independent of the motion of the body. The same motions are also accounted for in couple stress theories with axial vectors corresponding to the local rotation and are thus not independent of the motion of the body.

Grahic Jump Location
Fig. 4

(a) A discrete system of particles (labeled i) moving with displacement ui from an initial configuration to the current configuration. Likewise for a continuum moving from its initial configuration to the current configuration specified by a displacement field u(X, t). In both cases, the Hamiltonian maps entire displacement and momentum density fields to a real number at each time instant.

Grahic Jump Location
Fig. 5

A discrete beam figure with nodal positions ri and angles θi. It is possible to write the potential energy of the beamin terms of either the angles θi or the distances ||ri−ri−1||, ||ri+1−ri||, and ||ri+1−ri−1|| (by using the law of cosines). If we use the angles as the inputs, the corresponding generalized forces will be torques, which in turn can be written as “nonordinary” forces resulting in nonordinary state-based peridynamics (NSBP). On the other hand, if we use the distances, the corresponding forces will always be along the bond vectors and will result in “ordinary” state-based peridynamics (OSBP). This illustrates that whether it is NSBP or OSBP depends upon how the forces are resolved, which in turn depends upon the variables used in the potential energy.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In